• Tidak ada hasil yang ditemukan

Double pipe heat exchanger iterative design procedure

N/A
N/A
Protected

Academic year: 2025

Membagikan "Double pipe heat exchanger iterative design procedure"

Copied!
17
0
0

Teks penuh

(1)

Double pipe heat exchanger iterative design procedure

MEP460

Heat Exchanger Design

King Abdulaziz University

Mechanical Engineering Department

March 2020

(2)

Introduction Input data

Required output design data Procedure

Double pipe heat exchanger iterative design procedure

Contents

(3)

Introduction

The objective is to design a double pipe heat exchanger i.e. finding the heat

exchanger heat transfer area (which include the inner tube inside diameter, the heat exchanger length which fulfils the heat load and not exceeding the maximum

pressure in the tube or annulus flow

(4)

Input data

1-fluids flowing in the tube side and in the annulus.

2-mass flow rate for cold and hot streams

3-inlet and outlet temperatures or at least three temperatures and mass flow rates

4-maximum pressure drop in the tube side and in the annulus side i.e. Δ𝑝𝑡,𝑚𝑎𝑥 and Δ𝑝𝑎,𝑚𝑎𝑥

5-thermal conductivity of the tube material, kt

Required

1-Area of the heat exchanger for clean and fouled heat exchanger (Ac Af ,di, L, ….)

(5)

Inlet cold fluid temp.

Outlet cold fluid temp.

Inlet hot fluid temp.

Outlet hot fluid temp.

Tube side Max.

allowable

pressure drop

Annulus Max.

allowable pressure drop

Tci Tco Thi Tho Δ𝑃𝑡,𝑚𝑎𝑥 Δ𝑃𝑎,𝑚𝑎𝑥

[ºC] [ºC] [ºC] [ºC] [Pa] [Pa]

tube side mass flow rate

annulus side mass flow rate

Tube side fluid

Annulus side fluid

Inside fouling factor

Outside fouling factor

Tube thermal conductivity

𝑚𝑡 𝑚 𝑎 Rfi Rfo kt

[kg/s] [kg/s] [m2.K/W] [m2.K/W]

Input data

(6)

Assumptions

1-Tube wall thickness, t [mm]

2-Fouling factors (inside and outside i.e. Rfi, Rfo )

3-Initial guess for the tube and annulus velocities (Vt,max & Va,max)

(7)

1-Calculate the fourth temperature if not given using the heat balance equation i.e.

𝐿𝑀𝑇𝐷𝐶𝐹 = 𝑇ℎ𝑜 − 𝑇𝑐𝑖 − (𝑇ℎ𝑖 − 𝑇𝑐𝑜ሻ 𝑙𝑛 𝑇ℎ𝑜 − 𝑇𝑐𝑖 Τ 𝑇ℎ𝑖 − 𝑇𝑐𝑜

Procedure

2-Calculate the fluid properties at the mean temperatures

Property Cold side Hot side

Density 𝜌𝑐 𝜌

Specific heat 𝐶𝑝𝑐 𝐶𝑝ℎ

Thermal conductivity 𝑘𝑐 𝑘

Viscosity 𝜇𝑐 𝜇

Prandtl number Prc Prh

Then calculate LMTDCF

𝑞 = 𝐶𝑐Δ𝑇𝑐 = 𝐶Δ𝑇

(8)

3-Based on an assumed max velocity for tube side Vt,max for tube side, get di.

𝑚𝑡 = 𝜌𝑡𝑉𝑡,𝑚𝑎𝑥𝐴𝑐𝑡

where Act is the cross section area of the tube. Vt is the tube velocity. The Cross section area of the tube

Assume typical wall thickness t and get do 𝐴𝑐𝑡 = 𝜋

4 𝑑𝑖2

(9)

4-Using the given mass flow rate in the annulus and the assumed annulus max velocity, calculate the inside diameter of the annulus Di.

𝐷𝑒 = 4(𝜋 𝐷𝑖2Τ4 − 𝜋𝑑𝑜2Τ4ሻ

𝜋𝑑𝑜 = 𝐷𝑖2 − 𝑑𝑜2 𝑑𝑜

𝑚𝑎 = 𝜌𝑎𝑉𝑎,𝑚𝑎𝑥𝐴𝑐𝑎 𝐴𝑐𝑎 = 𝜋

4 𝐷𝑖2 − 𝑑𝑜2 Also calculate the hydraulic diameter De

Also calculate the hydraulic diameter Dh as follows

𝐷 = 4𝐴𝑐𝑎

𝑃 = 4𝐴𝑐𝑎

𝜋𝐷𝑖 + 𝜋𝑑𝑜 = 4 𝜋

4 (𝐷𝑖2 − 𝑑𝑜2

𝜋(𝐷𝑖 + 𝑑𝑜ሻ = 𝐷𝑖 − 𝑑𝑜

(10)

5-For tube side calculate Ret , Nut & ht

6-For annulus flow Calculate Rea ,Nua , & ha

7-You may assume typical values for the fouling resistances i.e. Rfi , and Rfo

8-Based on assumed kt , calculate Uc and Uf

1

𝑈𝑓 = 1

𝑡( Τ𝐴𝑖 𝐴𝑜ሻ + 𝑅𝑓𝑖

𝐴𝑖Τ𝐴𝑜 + 𝐴𝑜l n( 𝑑𝑜Τ𝑑𝑖

2𝜋𝑘𝐿 + 1

𝑎 + 𝑅𝑓𝑜

(11)

9-Use the equation

10-Calculate the pressure drop in tube side Δ𝑝𝑡 and the annulus side Δ𝑝𝑎

Use very simple equations to find the friction coefficient as a function of Re number

Δ𝑝 = 4𝑓 𝐿

𝜌 𝑉𝑡2 Δ𝑝𝑎 = 4𝑓𝑎 𝐿

𝜌𝑎 𝑉𝑎2 𝑞 = 𝑈𝑜𝐴𝑜𝐿𝑀𝑇𝐷𝐶𝐹 𝐹

𝑓 = 16 𝑅𝑒Τ

𝑓 = 1.58 ln 𝑅𝑒 − 3.28 −2 𝐴𝑜 = 𝜋𝑑𝑜𝐿

For turbulent flow inside a smooth pipe

For laminar flow

get the heat exchanger length L

(12)

11-Calculate the difference between the allowable pressure and the

pressure calculated from the previous step. It is called Residual Sum of Squares RSS

𝑅𝑠𝑠 = Δ𝑃𝑡 − Δ𝑃𝑡,𝑚𝑎𝑥 2 + Δ𝑃𝑎 − Δ𝑃𝑎,𝑚𝑎𝑥 2

When Rss is higher than a prescribed value, one can restart the iteration process by

computing the tube and annulus velocities from the allowable pressure drop for each side

Δ𝑝𝑡,𝑚𝑎𝑥 = 4𝑓𝑡 𝐿

𝐷𝑡 𝜌𝑡 𝑉𝑡2

2 Δ𝑃𝑎,𝑚𝑎𝑥 = 4𝑓𝑎 𝐿

𝐷 𝜌𝑎 𝑉𝑎2 2

0.5

(13)
(14)
(15)
(16)
(17)

Referensi

Dokumen terkait

of the tubes in an oil cooler flat tube heat exchanger maximizes heat transfer when poor.. heat transfer fluids like oil or ethylene glycol

Kenaikan suhu air yang keluas pada sisi tube heat exchanger juga memiliki korelasi yang kuat dengan panjang tube yang digunakan pada counter flow heat exchanger ini dengan

Tujuan pelaksanaan tugas akhir ini adalah memodifikasi shell and tube heat exchanger dan evaluasi performa shell and tube heat exchanger dengan metode NTU-effectiveness dengan

Jenis Heat Exchanger (HE ) yang akan digunakan dalam desain ini adalah Double pipe Heat Exchanger atau Shell and Tube Heat Exchanger bergantung pada flow area

The solution of the problem yields the optimum values of inner pipe diameter, outer pipe diameter and utility flow rate to be used for a double pipe heat exchanger of a given effective

Phrut Sakulchangsatjatai Co-advisor ABSTRACT This thesis work studies the performance of a wire-on-tube heat exchanger using an oscillating heat pipe as an extended surface under

37 5.2 Advantage of helical tube heat exchanger  Helical tube give better heat transfer characteristic, since they have lower resistance & high process side efficient  The whole

306 International Journal of Research and Applied Technology 122021 306-317 Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech SHELL AND TUBE HEAT EXCHANGER DESIGN FOR