• Tidak ada hasil yang ditemukan

Optimal Design of Energy Systems

N/A
N/A
Protected

Academic year: 2024

Membagikan "Optimal Design of Energy Systems"

Copied!
21
0
0

Teks penuh

(1)

Optimal Design of Energy Systems

Chapter 4 Equation Fitting

Min Soo KIM

Department of Mechanical and Aerospace Engineering

Seoul National University

(2)

Chapter 4. Equation Fitting

4.1 Mathematical Modeling

performance characteristics of equipment behavior of processes

thermodynamic properties

• Equation development is required

Facilitate the process of system simulation

Develop a mathematical statement for optimization

(3)

4.2 Matrices

Chapter 4. Equation Fitting

11 12 1

1 2

n

m m mn

a a a

a a a

 

 

 

 

 

 

 

 

Order of matrix

m n 

  A

T Transpose of a matrix [A]

ex>

 

1 4 2 5 3 6 A

 

 

  

 

 

 

1 2 3

4 5 6

A T  

  

 

(4)

Chapter 4. Equation Fitting

4.2 Matrices

• Simultaneous linear equations

1 2 3

1 2

1 2 3

2 3 6

3 1

4 2 0

x x x

x x

x x x

  

 

  

1 2 3

2 1 3 6

1 3 0 1

4 2 1 0

x x x

      

      

     

      

     

(5)

Chapter 4. Equation Fitting

4.2 Matrices

• Determinant

11 12 13

21 22 23

31 32 33

a a a

D a a a

a a a

 

11 22 33 12 23 31 13 21 32

31 22 13 21 12 33 11 23 32

a a a a a a a a a a a a a a a a a a

  

  

11 11 21 21 13 31

a A a A a A

  

cofactor of

22 33 23 32

a a a a

 

a11 [( 1) ]

i

[ ]

i j ij

submatrix formed by striking out A

th row and j th column of A

 

(6)

Chapter 4. Equation Fitting

4.3 Solution of Simultaneous Equations

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

[ ][ ] [ ]

a a a x b

A X a a a x b B

a a a x b

     

     

        

     

     

1 1 1 1 2 2 1 3 3 1

2 1 1 2 2 2 2 3 3 2

3 1 1 3 2 2 3 3 3 3

a x a x a x b a x a x a x b a x a x a x b

  

  

  

 Simultaneous linear equations

 Matrix form

(7)

Chapter 4. Equation Fitting

4.3 Solution of Simultaneous Equations

1 2 3

2 1 1 3

1 2 2 9

1 0 3 0

x x x

    

    

    

    

    

[ ] [ ] i

i

A matrix with B matrix substituted in th column

xA

ex>

1

3 1 1

9 2 2

0 0 3 45

2 1 1 15 3

1 2 2

1 0 3

x

2

2 3 1

1 9 2

1 0 3 2 1 1 2

1 2 2

1 0 3

x

 

3

2 1 3

1 2 9

1 0 0

2 1 1 1

1 2 2

1 0 3

x

• Crammer’s rule

(8)

Chapter 4. Equation Fitting

4.3 Solution of Simultaneous Equations

Coefficient matrix [A]

 

 

 

 

 

 

 

 

 

 

Triangular matrix

Back substitution

• Gaussian elimination

(9)

Chapter 4. Equation Fitting

4.4 Polynomial representation

2

0 1 2

n

y  a  a x  a x    a x

n

# of data point = n+1 → exact expression

> → best fit

(10)

Chapter 4. Equation Fitting

4.6

Simplification when the independent variable is uniformly spaced

Points are equally spaced

Derive 4th degree polynomial

n=4

2

0 1 0 2 0

3 4

3 0 4 0

( ) ( )

( ) ( )

n n

y y a x x a x x

R R

n n

a x x a x x

R R

1 0 n n 1

x x x x x

     

2

0 1 2

n

y a a x a x a xn

(next page)

Eq. (4.16) 4

x

(11)

Chapter 4. Equation Fitting

4.6

Simplification when the independent variable is uniformly spaced
(12)

Chapter 4. Equation Fitting

4.6

Simplification when the independent variable is uniformly spaced

2 3 4

1 0 1 0 1 0 1 0

1 1 2 3 4

1 2 3 4

4(x x ) 4(x x ) 4(x x ) 4(x x )

y a a a a

R R R R

a a a a

 

 

0 0

1 1 1 2 3 4

2 2 1 2 3 4

3 3 1 2 3 4

4 4 1 2 3 4

, ,

, 2 4 8 1 6

, 3 9 2 7 6 4

, 4 1 6 6 4 2 5 6

x x y y

x x y y a a a a

x x y a a a a

x x y a a a a

x x y a a a a

 

if substitute (x1,y1)

Substitute all the points to Equation (4.16)

(13)

Chapter 4. Equation Fitting

2

0 1 2

yaa xa x

4.7 Lagrange Interpolation

1( 2)( 3) 2( 1)( 3) 3( 1)( 2)

yc xx xxc xx xxc xx xx

1, 1 1( 1 2)( 1 3)

x x y c x x x x

2, 2 2( 2 1)( 2 3)

x x y c x x x x

3, 3 3( 3 1)( 3 2)

x x y c x x x x

1 1

( ) ( )

( ) ( )

n n

j i

i

i j i j i i

x x ommiting x x

y y

x x ommiting x x

 

(14)

Chapter 4. Equation Fitting

4.8 Function of two variables

2

1 : 1 1 1 1

S  P ab Qc Q

2

2 : 2 2 2 2

S  P ab Qc Q

2

3 : 3 3 3 3

S  P ab Qc Q

2

0 1 2

2

0 1 2

2

0 1 2

( ) ( ) ( )

a S A A S A S b S B B S B S c S C C S C S

( ) ( ) ( ) 2

P a S b S Q c S Q

   

(15)

Chapter 4. Equation Fitting

4.9 Exponential Forms

ln ln ln

y bxm

y b m x

 

y  b axm

If y approaches some value b, as orx   x  

Estimate b

Calculate m with log-log plot (y-b vs. x) Fitting (y vs. xm)

Correct value of b

Log-log plot (y=bxm)

Curve y=b+axm

(16)

Chapter 4. Equation Fitting

4.10 Best fit : Method of Least Squares

The sum of the squares of the deviation is a minimum

Misuse of least square method Example of least square method

Misuses of least square method

(a) Questionable correlation (b) Applying too low degree

(17)

Chapter 4. Equation Fitting

4.10 Best fit : Method of Least Squares

• Method of least squares for y  a bx

2( i i) 0

z a bx y

a

    

2 1

( ) min

m

i i

i

z a bx y

  

2( i i) i 0

z a bx y x

b

    

i i

ma  b  x   y

2

i i i i

a  x  b  x   x y

(18)

Chapter 4. Equation Fitting

4.10 Best fit : Method of Least Squares

<Example> provide a best fit (least square)

<Solution>

0 1

yaa x

0 1

4a 14a  49.9

x y

1 4.9

3 11.2

4 13.7

6 20.1

0 1

14a  62a  213.9

1.908 3.019

y   x

(19)

Chapter 4. Equation Fitting

4.10 Best fit : Method of Least Squares

• Method of least squares for y  a bx cx2

2

2 3

2 3 4 2

1 i i i

i i i i i

i i i i i

a b x c x y

a x b x c x y x

a x b x c x y x

  

  

  

   

   

   

sin ln ya xb x

(sin ) 2

(ln ) 2

(sin ) (ln ) sin

(sin ) (ln ) ln

i

i

x

i i i i

x

i i i i

a x b x y x

a x b x y x

  

  

• For

(20)

Chapter 4. Equation Fitting

4.11 Method of Least Squares Applied to Nonpolynomial Forms

• Method of least squares

→ apply to equation with constant coefficients cf)

y  sin 2 ax  bx

c
(21)

Chapter 4. Equation Fitting

4.12 The are of equation fitting

• Choice of the form of the equation

Polynomials with negative exponent(1) Exponential eq.(2)

Gompertz eq(3) combination

, 1

cx

yab where b c

(1) (2) (3)

Referensi

Dokumen terkait