Polymer Supported Reagents &
Polymer Supported Reagents &
Catalysts Catalysts
Contents
Polymer reagent : oxidation reagent, bromination,..
Polymer catalyst : C-C coupling catalyst
Advantages of Supported Reagents
• Easy separation of polymer and its bound component
• Recycling possible (especially for expensive catalysts)
• Can use high concentrations of reagents
• Easier chemistry than solution-phase synthesis
Polymeric Supports in
Organic Chemistry
Polymeric Supports in
Organic Chemistry
Rapid Development of Combinatorial Chemistry Rapid Development of Combinatorial Chemistry
Solid-Phase Synthesis (Peptides, DNA, ...) Solid-Phase Synthesis
(Peptides, DNA, ...) Supported Reagents &
Catalysts during Synthesis Supported Reagents &
Catalysts during Synthesis
Basic Concept of Solid Phase
Organic Synthesis
Basic Concept of Solid Phase
Organic Synthesis
Catalyst or
Reagents
Polymer Supported Reagents Polymer Supported Reagents
Reagent
substrate filtration product
• Oxidation
• Reduction
• Nucleophilic reaction
• C-C bond formation
• Amide bond formation
O
N O.
NMe3 RuO4
+ -
- Example of polymer supported oxidant
NMe3 Cr2O7
+ 2-
OsO4
L [ ]
• Oxidation of alcohol C-OH C=O
• Dihydroxylation of alkene
• Epoxidation & oxidation of amine
O O
Polymeric Reagents
Polymeric Reagents for amide bond formationfor amide bond formation
O
NH N
N O H
NO2
or R-CO2H, DIC, DMAP, DMF, RT,
O
NH N
N O
NO2 R
O
R'-NH2
R CNH-R' O R-COCl, TEA, THF, RT, 2 h
24 h
reddish orange
dark brown 60-99% yield
• R-COCl, R-CO2H
• R’-NH2
Yoon-Sik Lee et al. Tetrahedron Lett., 44, 2003, 8063-8067
Scavenger
A(excess) + B
A-B + A
Scavenger
A-B
filtration
Polymeric Scavenger Polymeric Scavenger
Acidic
OH O
S OH
O
Basic N
CH3 CH3
N
Nuclophilic NH2 N
NH2
NH2
Electrophilic N C O
H O
IBX (o-iodoxybenzoic acid)
• Efficient, selective, mild and environmentally safe oxidizing agent
• Synthesis of carbonyl compounds from primary or secondary alcohols
• No oxidative cleavage (1,2-diols)
• Insoluble in organic solvent (except DMSO) thru inter H-bonding
(1994)
Frigerio et al.
IBX
(1983)
Dess & Martin
DMP IBX amide
(2003)
Zhdankin & Tykwinski
I O N H
O O
R I
O O
AcO OAcOAc I
O O
O OH
Polymeric
Polymeric Oxidant : IBX reagentOxidant : IBX reagent
Polymer supported IBX Polymer supported IBX
I O O
O OH
Rxn at elevated temp. Rxn in ionic liquid/water
With catalyst
Surenda et al.
J. Org. Chem. (2003) More et al.
Org. Lett. (2002)
Liu et al.
Org. Lett. (2003)
Water-soluble derivative of IBX
Thottumkaraa et al.
T. L. (2002)
IBX amide
Zhdankin et al.
Angew. Chem. (2003) β-cyclodextrin
Solubility Problem of IBX Solubility Problem of IBX
OH
R1 R2
O
R1 R2
IBX (1eq)
-cyclodextrin,
water/acetone(86:14), 12 h, RT
85 - 98%
β
OH
R1 R2
O
R1 R2
IBX (3eq)
solvent, 3-6 h, 55-80¡É
0 - 100%
Rxn at elevated temperature
With catalyst
• Solvent: EtOAc, CHCl3, DCE, toluene, THF • Decomposition problem
- Jesse D. More et al. Org. Lett. 2002, 4, 3001-3003
- K. Surendra et al. J. Org. Chem. 2003, 68, 2058-2059
• Supramolecular catalysis
Rxn at High Temp or with Catalyst Rxn at High Temp or with Catalyst
Water-soluble derivatives - A. P. Thottumkaraa et al. Tetrahedron Lett. 2002, 43, 569-572
• Solvent: Water/THF (3:2)
• Temp.: 55-60 ℃
• Oxidant: 1.5 eq.
• Rxn time: 3–12 h
• Only electronically active substrate were oxidized
Soluble IBX Derivatives (I) Soluble IBX Derivatives (I)
IBX amide - V. V. Zhdankin et al. Angew. Chem., Int. Ed. 2003, 42, 2194–2196
• Pseudo cyclic structure (intramolecular secondary I•••O bonds):
- partially replace the intermolecular I•••O secondary bonds that afforded the polymeric structure of other reported iodylarenes
soluble
• Reactivity similar to IBX
R-NH2: amino acid
Soluble IBX Derivatives (II) Soluble IBX Derivatives (II)
I
O NH
R
I
N H
O
O O
R O
O
acetone, RT
Polymer support: BTCore™-OH *, BTCore™-NH2
Polymer support: BTCore™-OH *, BTCore™-NH2
IBX-ester resin
IBX-amide resin
OH I
O O H
O
O I
O
O I O
O
NH2 I
O O H
NH
O I
NH
O I O
O
DIC,DMAP/DMF
TBAO,MeSO3H / MC
BOP,DIEA,HOBt
TBAO,MeSO3H / MC or DMDO
or DMDO
Coupling
Coupling ActivationActivation
OH I
O O H
O
O I
O
O I O
O
NH2 I
O O H
NH
O I
NH
O I O
O
DIC,DMAP/DMF
TBAO,MeSO3H / MC
BOP,DIEA,HOBt
TBAO,MeSO3H / MC or DMDO
or DMDO
Coupling
Coupling ActivationActivation
* Yoon-Sik Lee et al. Tetrahedron Lett. 1997, 38, 591–594
Preparation of IBX Reagent Resin Preparation of IBX Reagent Resin
Bu4N-Oxone,
Bu4N-Oxone, DCM
DCM
Oxone : potassium peroxymonosulfate, 2KHSO5 KHSO4 K2SO4
hydroxy
FT-IR Spectra (coupling) FT-IR Spectra (coupling)
OH
carbonyl O
O I
1724 cm-1
NH2 N
H O
I
Appearance of 1655 cm-1 (C=O stretch of amide)
Coupling of 2-Iodobenzoic acid to BTCoreTM-OH
Bu4N-Oxone, MeSO3H (5eq. each) / DCM, 30℃, 20 h
NH O
I
O O
O O
I
O O
O O
I
NH O
I
IBX ester resin
IBX amide resin
Activation (step 2) Activation (step 2)
Bu4N-Oxone, MeSO3H (5eq. each) / DCM, 30℃, 20 h
Activation of BTCore™-2-iodobenzoate
after 20hr after 6hr
after 12hr
1728 cm-1
1674 cm-1
Activation of BTCore™- 2-Iodobenzamide
FT-IR Spectrum (activation) FT-IR Spectrum (activation)
O O
I
activation
- peak shift (C=O of amide) : 1655 cm-1 1620 cm-1
• C=O: 1674 cm-1
• I=O: 730-800 cm-1 Characteristic peak
- Titration by benzyl alcohol
GC-Mass Analysis
100mg of resin / 1mL of DCM
BTCore™-IBX ester
(from 2.1 mmol/g ) BTCore™-IBX ester
(from 0.91 mmol/g ) BTCore™- IBX amide (from 2.1 mmol/g )
Loading Level
of resin 1.1 mmol/g (HL) 0.65 mmol/g (SL) 0.98 mmol/g
OH H
O
oxidant resin
excess
RT, 18hr
Determination of Loading Level Determination of Loading Level
0 10 20 30 40 50 60 70 80 90 100
0 1 2 3 4 5 6 7 8 9 10 11 12
Time (h)
Conversion (%)
0 10 20 30 40 50 60 70 80 90 100
0 1 2 3 4 5 6 7 8 9 10 11 12
Time (h)
Conversion (%) BTCore™- IBX ester 2eq. of resin (SL) (▲) 2eq. of resin (HL) (■) 4eq. of resin (HL) (□)
BTCore™- IBX amide 1.2eq. of resin (○) 2eq. of resin (●)
at 25℃ in DCM (100mg of resin / 1 mL)
BTCore™- IBX amide exhibited fast oxidation of benzyl alcohol
Time Course (benzyl alcohol oxidation) Time Course (benzyl alcohol oxidation)
Bromination using IBX Amide resin Bromination using IBX Amide resin
NH O
I
O O
TEAB ( Tetraethylammonium Bromide )
Et4NBr3 * : Mild brominating agent IBX amide resin : Oxidizing agent Et4NBr IBX amide resin
Et4NBr3
* S. Kajigaeshi et al., J. Chem. Soc., Perkin Trans. 1 1990, 897.
X
R
X
Br R
X=NH2, OH R=Cl,NO2
TEAB, / DCM , r.t.
* Yoon-Sik Lee et al. SYNLETT. 2005, 2, 279–282
Results of Bromination Results of Bromination
entry
entry IBXIBXaa:TEAB:TEAB Time (h)Time (h) SubstrateSubstrate ProductProduct YieldYieldbb (%)(%)
1 3:3 0.5 82.8
2 4:4 1 51.6
3 3:3 0.5 95
4 1:1 2.5 94.5
a IBX : IBX amide resin (0.99mmol/g) , b isolated yields
(1 : 6.4)
NH2 NH2
Br
NH2
Br NH2
NO2
NH2
NO2 Br
OH
NO2
OH
NO2 Br Br
OH
Cl Cl
OH
Cl Cl
Br
entry
entry oxidantoxidant
(eq)(eq) t (h)t (h) substratesubstrate productproduct conversionconversionaa (%) (%)
1 2 3 99%
2 2 6 99%
3 2 15 99%
4 1.2 0.25 P(OEt)3 O=P(OEt)3 99%
5 1.2 4.5 P(OPh)3 O=P(OPh)3 99%
a GC-MS analysis; 100 mg of resin / 1.5 mL of DCM
Oxidation of Sulfides & Phosphites Oxidation of Sulfides & PhosphitesOxidation of Sulfides & Phosphites Oxidation of Sulfides & Phosphites
S CH3 S
CH3 O
S CH3 O2N
S CH3 O
O2N S CH3
O H
S CH3 O
O
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1 2 3 4 5 6 7 8 9 10
Regeneration of IBX Amide Regeneration of IBX Amide
Resin Resin
reuse (#)
Initial 1 2 3 4 5 6
Loading capacity (a.u.)
Oxidant resin
(0.59 mmol/g)
Regeneration: Bu4N-Oxone, MeSO3H (5eq. each) / DCM at RT for 20h
Benzyl alcohol (3 eq.) oxidation : RT, 18h
Oxidative activity was maintained during 9times oxidation & regeneration
NH O
I
O O
7 8 9
Macroporous PS-supported IBX amide Macroporous PS-supported IBX amide
Advantages of MPS (Macroporous Polystyrene)
Less solvent diffusion problem.Less solvent diffusion problem.
Large surface area. Large surface area.
Much broader solvent system.Much broader solvent system.
Less swellable.Less swellable.
Applicable to Pack-bed reactor flow-systemApplicable to Pack-bed reactor flow-system..
Synthetic Scheme
i) 2-iodobenzoic acid, DIC, HOBT, DIEA, DMF, rt, 6h; ii) NBu4SO5H, MeSO3H, DCM, rt, 10~12 h.
Solvent-friendly MPS-IBX amide Solvent-friendly MPS-IBX amide
Using 2 equiv of oxidant at rt and methoxybenzyl alcohol as the Using 2 equiv of oxidant at rt and methoxybenzyl alcohol as the substrate.
substrate.
DCM (□), ACN (♦), THF (■), acetone (▲) and diethyl ether (+).DCM (□), ACN (♦), THF (■), acetone (▲) and diethyl ether (+).
Conversion (%) was determined by 300MHz 1H NMR spectroscopy. Conversion (%) was determined by 300MHz 1H NMR spectroscopy.
Comparison of several solvents
MPS-IBX amide
MPS-IBX amide A gel type of PS-IBX amideA gel type of PS-IBX amide
Preparation of imidazolium-bound Core (IB-Core) bead
Cl + N N
1) CHCl3 50℃
5hr 1.3 eq
N + N PF6-
[MVBIM][PF6-] 2) NaPF6
Acetone 25℃
2 days
immiscible with styrene and water.
N + NPF6-
Suspension polymerization
- Polymerization Time : 20 hours - Polymerization Temperature : 70 º C - RPM : 200 ~ 300
N N
+
N N
+
N N
+
N
+ N
N
+N
N
+N N
N
+
N
N
+
N N+
N
N +
N N+
N N+
PF6-
PF6-
PF6-
PF6-
PF6-
PF6-
PF6- PF6- PF6-
PF6- PF6-
PF6-
Tetrahedron Lett. 2004, 45, 1837-1840, J. W. Byun, Y. S. Lee Tetrahedron Lett. 2004, 45, 5827-5831, J. H. Kim, Y. S. Lee
IB-Core Resin IB-Core Resin
water
oil
20 ㎛
20 ㎛
FE-SEM & CLSM images of imidazolium-bound Core (IB-Core) bead
IB-Core Resin IB-Core Resin
N
+ NPF6
-
Pd(OAc)2
1, 2, 4 eq
Cs2CO3 H2O/DMF 50 ℃, 2 h IB-1 (0.23 mmol/g)
N N
N N
Pd PF6 F6P
Immobilization of Pd for Suzuki C-C coupling
IB-NHC-Pd complex
IB-Core Resin IB-Core Resin
Suzuki C-C coupling reaction using IB-NHC-Pd complex
R
X
R
IB-NHC-Pd complex (1 mol%) Ph-B(OH)2 , 50℃
DMF/ H2O
=1/1
Entry R X Base Time
(h)
Isolated Yield
(%)
1 OH I Na2CO3 1 95
2 OCH3 I Na2CO3 1 94
3 CH3 I Na2CO3 1 94
4 CH3 Br Na2CO3 6 93
5 OH Br Na2CO3 6 92
6 CHO Br Na2CO3 6 94
7 COOH Br Na2CO3 6 94
8 OCH3 Br Na2CO3 6 95
IB-Core Resin IB-Core Resin
Reusability of IB-NHC-Pd complex
0 20 40 60 80 100
1 2 3 4 5 6 7 8 9 10
The number of recycling
Isolation yield(%)
I IB-NHC-Pd complex (1 mol %) Ph-B(OH)2 1.2 eq
Na2CO3 5 eq for 1 h at 50℃
IB-Core Resin IB-Core Resin