1. Perturbation theory (background) 2. QG theory (for shallow water)
3. QG theory (for primitive equations), QGPV equation
Quasi-Geostrophic (QG) theory
Estimated solutions of Schrödinger equation using Perturbation theory https://demonstrations.wolfram.com/
QG theory (for primitive equation)
Primitive equation in 𝛽 plane ( )
f = f0 + βy
Du
Dt − ( f0 + βy) v = − ∂Φ∂x +X Dv
Dt + (f0 + βy) u = − ∂Φ
∂y +Y
∂Φ
∂z* = − R H T
∂u
∂x + ∂v
∂y + 1 ρ0
∂ (ρ0 w*)
∂z* = 0 Dθ
Dt = Q
where
,
w* ≡ Dz*
D Dt
Dt ≡ ∂
∂t + u ∂
∂x + v ∂
∂y + w* ∂
∂z*
T = θe−κz/H e−κz/H = (ps p )
−κ
Q ≡ J cp
θ T
Scale of synoptic phenomena
(from web.kma.go.kr)
L -3 -12
1470 1410
Typical synoptic scale in mid-latitude U ~ 10 m/s W ~ 10-2 m/s
L ~ 106 m t ~ 105 s (~1 day) f ~ 10-4 /s 𝜷 ~ 10-11 /sm
𝜃 ~ 102 K 𝛿𝜃 ~ 10 K 𝛿𝚽 ~ 103 m2/s2
QG theory (primitive, log-P)
Geostrophic balance
Using hydrostatic balance
(ug , vg) = f0−1(−Φy , Φx )
(Φ − Φ0(z))z = R
H (T − T0(z)) f0 ψz = R
H (T − T0(z)) Stream function (u , v) = (−ψy , ψx )
Where
f0 ψ = Φ′(x, y, x, t)
= Φ − Φ0(z)
|∂θe/∂z| ≪ |∂θ0/∂z|
QG theory (primitive, log-P)
Note: some useful manipulation
f0 ψz = R
H (T − T0(z)) = R
H (θ − θ0(z)) e−κz/H = g
⟨θ⟩ θe f0 ψz = g
⟨θ⟩
dθ0
dz θe/ dθ0 dz
f0
N2 ψz = θe (θ0)z
QG theory (primitive, log-P)
ut + uux + vuy + wuz − ( f0 + βy) v = − Φx
∂u
∂x + ∂v
∂y + 1 ρ0
∂ (ρ0 w*)
∂z* = 0
QG theory (primitive, log-P)
ut + uux + vuy + wuz − ( f0 + βy) v = − Φx
QG theory (primitive, log-P)
* Define reference thermal structure (vertical only)
And we know
θt + uθx + vθy + wθz = Q
θ (x, y, z, t) = θe(x, y, z, t) + θ0(z)
|∂θe/∂z| ≪ |∂θ0/∂z|
QG equations (log-P)
Dg ug − f0 va − βyvg = X Dg vg + f0 ua + βyug = Y Dg θe + wa (θ0)z = Q
(ua)x + (va)y + ρ0−1(ρ0wa)z = 0
where
,
Dg ≡ ∂
∂t + ug ∂
∂x + vg ∂
∂y
T = θe−κz/H e−κz/H = ( ps p )
−κ
Q ≡ J cp
θ T
QGPV equation (log-P)
Vorticity equation
Thermodynamic energy equation
Dg (f0 + βy + ψxx + ψyy) = f0 1
ρ0 (ρ0w)z −Xy + Yx
Dg (θe/θ0z) + w = Q/θ0z
= f0 N2 ψz
QGPV equation (log-P)
Vorticity equation
Thermodynamic energy equation
Quasi-Geostrophic Potential Vorticity (QGPV) equation
Dg (f0 + βy + ψxx + ψyy) = f0 1
ρ0 (ρ0w)z −Xy + Yx Dg (θe/θ0z) + w = Q/θ0z
Dg
[f0 + βy + ψxx + ψyy + 1
ρ0 (ρ0 f02
N2 ψz)z] = f0
ρ0 (ρ0 Q
θ0z )
z
− Xy + Yx
= f0 N2 ψz