• Tidak ada hasil yang ditemukan

Quasi-Geostrophic (QG) theory

N/A
N/A
Protected

Academic year: 2023

Membagikan "Quasi-Geostrophic (QG) theory"

Copied!
11
0
0

Teks penuh

(1)

1. Perturbation theory (background) 2. QG theory (for shallow water)

3. QG theory (for primitive equations), QGPV equation

Quasi-Geostrophic (QG) theory

Estimated solutions of Schrödinger equation using Perturbation theory https://demonstrations.wolfram.com/

(2)

QG theory (for primitive equation)

Primitive equation in 𝛽 plane ( )

f = f0 + βy

Du

Dt ( f0 + βy) v = − ∂Φx +X Dv

Dt + (f0 + βy) u = − ∂Φ

y +Y

∂Φ

z* = R H T

u

x + v

y + 1 ρ0

(ρ0 w*)

z* = 0

Dt = Q

where

,

w* Dz*

D Dt

Dt ≡ ∂

t + u

x + v

y + w*

z*

T = θeκz/H eκz/H = (ps p )

κ

Q J cp

θ T

(3)

Scale of synoptic phenomena

(from web.kma.go.kr)

L -3 -12

1470 1410

Typical synoptic scale in mid-latitude U ~ 10 m/s W ~ 10-2 m/s

L ~ 106 m t ~ 105 s (~1 day) f ~ 10-4 /s 𝜷 ~ 10-11 /sm

𝜃 ~ 102 K 𝛿𝜃 ~ 10 K 𝛿𝚽 ~ 103 m2/s2

(4)

QG theory (primitive, log-P)

Geostrophic balance

Using hydrostatic balance

(ug , vg) = f0−1(−Φy , Φx )

(Φ − Φ0(z))z = R

H (T T0(z)) f0 ψz = R

H (T T0(z)) Stream function (u , v) = (−ψy , ψx )

Where

f0 ψ = Φ′(x, y, x, t)

= Φ − Φ0(z)

|θe/z| |θ0/z|

(5)

QG theory (primitive, log-P)

Note: some useful manipulation

f0 ψz = R

H (T T0(z)) = R

H (θ θ0(z)) eκz/H = g

θ θe f0 ψz = g

θ

0

dz θe/ dθ0 dz

f0

N2 ψz = θe (θ0)z

(6)

QG theory (primitive, log-P)

ut + uux + vuy + wuz ( f0 + βy) v = − Φx

u

x + v

y + 1 ρ0

(ρ0 w*)

z* = 0

(7)

QG theory (primitive, log-P)

ut + uux + vuy + wuz ( f0 + βy) v = − Φx

(8)

QG theory (primitive, log-P)

* Define reference thermal structure (vertical only)

And we know

θt + x + y + z = Q

θ (x, y, z, t) = θe(x, y, z, t) + θ0(z)

|θe/z| |θ0/z|

(9)

QG equations (log-P)

Dg ug f0 va βyvg = X Dg vg + f0 ua + βyug = Y Dg θe + wa (θ0)z = Q

(ua)x + (va)y + ρ0−1(ρ0wa)z = 0

where

,

Dg ≡ ∂

t + ug

x + vg

y

T = θeκz/H eκz/H = ( ps p )

κ

Q J cp

θ T

(10)

QGPV equation (log-P)

Vorticity equation

Thermodynamic energy equation

Dg (f0 + βy + ψxx + ψyy) = f0 1

ρ0 (ρ0w)z Xy + Yx

Dg (θe/θ0z) + w = Q/θ0z

= f0 N2 ψz

(11)

QGPV equation (log-P)

Vorticity equation

Thermodynamic energy equation

Quasi-Geostrophic Potential Vorticity (QGPV) equation

Dg (f0 + βy + ψxx + ψyy) = f0 1

ρ0 (ρ0w)z Xy + Yx Dg (θe/θ0z) + w = Q/θ0z

Dg

[f0 + βy + ψxx + ψyy + 1

ρ0 (ρ0 f02

N2 ψz)z] = f0

ρ0 (ρ0 Q

θ0z )

z

Xy + Yx

= f0 N2 ψz

Referensi

Dokumen terkait

5, 2014 ラン藻の代謝改変によるバイオプラスチック増産 ラン藻代謝工学の新展開 ラン藻は,酸素発生型の光合成を行う細菌である(図 1).淡水,海水,土壌から深海や温泉に至るまで,あら ゆる環境に生育していることが知られている.光合成を 行うことで,光エネルギーと大気中の二酸化炭素の利用 が可能であることから,ラン藻を用いたバイオエネル