• Tidak ada hasil yang ditemukan

Real hypersurfaces in the complex quadric with parallel Ricci tensor

N/A
N/A
Protected

Academic year: 2023

Membagikan "Real hypersurfaces in the complex quadric with parallel Ricci tensor"

Copied!
20
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Real hypersurfaces in the complex quadric with parallel Ricci tensor

Young Jin Suh

KyungpookNationalUniversity,Collegeof NaturalSciences,Departmentof Mathematics,Daegu702-701,RepublicofKorea

a r t i c l e i n f o a bs t r a c t

Article history:

Received22October2014 Receivedinrevisedform11May 2015

Accepted21May2015 Availableonlinexxxx CommunicatedbyGangTian

MSC:

primary53C40 secondary53C55

Keywords:

ParallelRiccitensor A-isotropic A-principal Kählerstructure Complexconjugation Complexquadric

We introduce the notion of parallel Ricci tensor for real hypersurfacesinthecomplexquadricQm=SOm+2/SOmSO2. According totheA-principalor theA-isotropicunitnormal vector field N, we give a complete classification of real hypersurfacesinQm=SOm+2/SOmSO2 withparallelRicci tensor.

© 2015ElsevierInc.All rights reserved.

This workwassupportedby grant Proj.No.NRF-2015-R1A2A1A-01002459 fromNational Research FoundationofKorea.

E-mailaddress:[email protected].

http://dx.doi.org/10.1016/j.aim.2015.05.012 0001-8708/© 2015ElsevierInc.All rights reserved.

(2)

1. Introduction

WhenweconsidersomeHermitiansymmetricspacesofrank2,wecanusuallygiveex- amplesofRiemanniansymmetricspacesSUm+2/S(U2Um) andSU2,m/S(U2Um),which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmanniansrespectively(see [1,2,4,13]). Those aresaid to be Hermitian symmetric spacesandquaternionicKählersymmetricspacesequippedwiththeKählerstructureJ andthequaternionicKählerstructure Jandtheyhaverank 2.

AsanotherkindofHermitiansymmetricspacewithrank2 ofcompacttypedifferent fromtheaboveones,wecangiveanexampleofcomplexquadricQm=SOm+2/SOmSO2, which is acomplex hypersurface incomplex projective space CPm+1 (see Berndt and Suh [3], and Smyth[11]). Thecomplex quadric canalso be regardedas akind of real Grassmann manifolds of compact type with rank 2 (see Kobayashi and Nomizu [7]).

Accordingly,thecomplexquadricadmitstwoimportantgeometricstructures,acomplex conjugationstructureAandaKählerstructureJ,whichanti-commutewitheachother, thatis,AJ=−J A.Thenform≥2 thetriple(Qm,J,g) isaHermitiansymmetricspace ofcompacttypewithrank2 anditsmaximalsectionalcurvatureisequalto4 (seeKlein [6]andReckziegel[10]).

For the complex projective space CPm+1 and the quaternionic projective space QPm+1 someclassificationsrelatedto parallelRiccitensorwereinvestigatedinKimura [5], and Pérez and Suh [8], respectively. For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(UmU2) a new classification was obtained by Berndt and Suh [1]. By using this classification Pérez and Suh [9] proved anon-existence property for Hopf hypersurfaces in G2(Cm+2) with parallel and commuting Ricci tensor. Suh [12]

strengthenedthisresulttohypersurfacesinG2(Cm+2) withparallelRiccitensor.More- over, Suhand Woo[15] studiedanothernon-existence property forHopfhypersurfaces in complex hyperbolic two-plane Grassmannians SU2,m/S(U2Um) with parallel Ricci tensor.

It is known that the Reeb flow on a real hypersurface in G2(Cm+2) is isometric if and only if M is an open part of a tube around a totally geodesic G2(Cm+1) G2(Cm+2) in[2].Moreover,in[13]weassertedthattheReebflowonarealhypersurface in SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around a totallygeodesic SU2,m−1/S(U2Um−1)⊂SU2,m/S(U2Um).Here,the Reebflow on real hypersurfaces in SUm+2/S(UmU2) or SU2,m/S(U2Um) is said to be isometric if the shapeoperatorcommuteswiththestructure tensor.Inthepaper[3]duetoBerndtand Suh,weinvestigatedthisproblemforthecomplexquadricQm=SOm+2/SOmSO2 and obtainedthefollowing result:

LetM be areal hypersurface of thecomplex quadric Qm,m 3. The Reeb flow on M isisometric if and only if m iseven, saym = 2k,and M isan open partof a tube aroundatotally geodesic CPk ⊂Q2k.

ApartfromthecomplexstructureJthereisanotherdistinguishedgeometricstructure onQm,namelyaparallelranktwovectorbundleAwhichcontainsanS1-bundleofreal

(3)

structures,thatis,complexconjugationsAonthetangentspacesofQm.Thisgeometric structure determinesamaximalA-invariantsubbundleQofthetangentbundleT M of arealhypersurfaceM inQm.

When we consider a hypersurface M in the complex quadric Qm, the unit normal vector fieldN ofM inQm canbe dividedinto twoclasses ifeitherN is A-isotropicor A-principal(see[3,4,14]).Inthefirstcasewhere N isA-isotropic,wehaveshownin[3]

thatM islocallycongruenttoatubeoveratotallygeodesicCPk inQ2k.Inthesecond case,whentheunitnormalNisA-principal,weprovedthatacontacthypersurfaceMin QmislocallycongruenttoatubeoveratotallygeodesicandtotallyrealsubmanifoldSm inQm(see[4]).InthispaperweconsiderthenotionofRicciparallelismforhypersurfaces inQm,thatis,∇Ric= 0. Thenmotivated bytheresultdue to theA-principalnormal forcontacthypersurfacesinQm,weassertthefollowing

Theorem 1.Theredo notexistany Hopfhypersurfaces inthecomplex quadric Qm with parallel Riccitensor andA-principal normalvector field.

InSection4wewill giveitsproof indetail.Nowat eachpoint z∈M letusconsider amaximalA-invariantsubspaceQz ofTzM,z∈M,definedby

Qz={X ∈TzM|AX∈TzM for allA∈Az}

of TzM, z∈M. Thus for a case where the unit normal vector field N is A-isotropic it can be easily checked that the orthogonal complement Qz = CzQz, z∈M, of the distribution Q in the complex subbundle C, becomes Qz = Span{Aξ,AN}. Here it can be easily checked that the vector fields and AN belong to the tangent space TzM, z∈M ifthe unitnormal vector fieldN becomes A-isotropic.Then motivated by the above result, in this paper we give another theorem for real hypersurfaces in the complexquadricQmwithparallel RiccitensorandA-isotropicunitnormalas follows:

Theorem 2. LetM be aHopf real hypersurface inthe complex quadric Qm,m≥4,with parallelRiccitensorandA-isotropicunitnormalN.Iftheshapeoperatorcommuteswith the structure tensor on the distribution Q, then M has 3 distinct constant principal curvaturesgivenby

α= 0, γ= 0, λ=−√

3, andμ= 3 or

α=

2(m−3), γ= 0, λ= 0, andμ= 2 2(m−3) with corresponding principalcurvature spaces

Tα= [ξ], Tγ = [Aξ, AN], φ(Tλ) =Tμ,dim Tλ= dimTμ=m−2.

(4)

Ourpaper is organizedas follows. In Section2we present basicmaterial about the complex quadric Qm, including its Riemannian curvature tensor and a description of its singular vectors of Qm like A-principal or A-isotropic unit normal vector field. In Section3,weinvestigatethegeometryofthissubbundleQforhypersurfacesinQmand someequationsincludingCodazziandfundamentalformulasrelatedtothevectorfields ξ,N,,andAN forthecomplexconjugation AofM inQm.

Finally,inSections4and 5, wepresentthe proofofTheorems 1 and2,respectively.

InSection4,the firststep isto derive theRiccitensor from theequation of Gauss for real hypersurfaces M in Qm and to get some formulas by the assumption of parallel Riccitensor and A-principalnormal vector field,and show that areal hypersurface in Qm which is atube over an m-dimensional unit sphere Sm does not admit aparallel Ricci tensor. The next step is to show thatthere do not exist any real hypersurfaces in the complex quadric Qm with parallel Ricci tensor and A-principal normal vector field.

In Section 5, we give a complete proof of Theorem 2. The first part of this proof is devotedto givesome fundamentalformulas from Ricci parallel and A-isotropicunit normalvectorfield.Theninthelatterpartoftheproofwewillusetheexpressionofthe shapeoperatorforrealhypersurfacesinQmwhentheshapeoperatorandthestructure tensorcommutesonthedistributionQ,whereQ denotesanorthogonalcomplement ofthemaximalA-invariantsubspaceQinthecomplexsubbundleCofTzM,z∈MinQm. 2. Thecomplexquadric

For more details in this section we refer to [3,4,6,7,10,14]. The complex quadric Qm is the complex hypersurface in CPm+1 which is defined by the equation z02 + . . .+zm+12 = 0, where z0,. . . ,zm+1 are homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric g which is induced from the Fubini–Study metric ¯g on CPm+1 with constant holomorphic sectional curvature 4. The Fubini–

Study metric ¯g is defined by g(X,¯ Y) = Φ(J X,Y) for any vector fields X and Y on CPm+1 and a globally closed (1,1)-form Φ given by Φ = 4i∂∂logf¯ j on an open set Uj ={[z0,z1,· · ·,zm+1]CPm+1|zj=0},where thefunctionfj denotes fj =m+1

k=0tkj¯tkj, and tkj = zzkj for j,k = 0,· · ·,m+ 1. Then naturally the Kähler structure on CPm+1 inducescanonicallyaKählerstructure(J,g) onthecomplexquadricQm.

The complex projective space CPm+1 is a Hermitian symmetric space of the spe- cial unitary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0,. . . ,0,1] CPm+1 the fixed point of the action of the stabilizer S(Um+1U1).

The special orthogonal group SOm+2 SUm+2 acts on CPm+1 with cohomogeneity one.TheorbitcontainingoisatotallygeodesicrealprojectivespaceRPm+1 CPm+1. ThesecondsingularorbitofthisactionisthecomplexquadricQm=SOm+2/SOmSO2. This homogeneous space model leads to the geometric interpretation of the complex quadricQmastheGrassmannmanifoldG+2(Rm+2) oforiented2-planesinRm+2.Italso givesamodelofQmasaHermitiansymmetricspaceofrank 2.ThecomplexquadricQ1

(5)

isisometric toasphereS2withconstantcurvature,andQ2isisometrictotheRieman- nian product of two 2-spheres withconstantcurvature. For this reasonwe will assume m≥3 fromnowon.

For a nonzero vector z Cm+2 we denote by [z] the complex span of z, that is, [z]={λz |λ∈C}. Note thatbydefinition[z] isapointinCPm+1. Asusual, for each [z]CPm+1 weidentifyT[z]CPm+1 withtheorthogonal complementCm+2[z] of[z]

inCm+2.For[z]∈QmthetangentspaceT[z]Qmcanthenbeidentifiedcanonicallywith the orthogonalcomplement Cm+2([z]z]) of[z]z] in Cm+2 (see Kobayashiand Nomizu [7]). Note that ¯z ν[z]Qm is a unit normal vector of Qm in CPm+1 at the point [z].

We denote by Az¯ the shape operator of Qm in CPm+1 with respect to the unit normal z.¯ Itis definedbyAz¯w=wz¯=wforacomplexEuclidean connection and allw∈T[z]Qm.Thatis,theshapeoperatorA¯zisjustcomplexconjugationrestrictedto T[z]Qm. Theshape operatorAz¯is ananti-commuting involutionsuch thatA2z¯=I and AJ =−J AonthecomplexvectorspaceT[z]Qmand

T[z]Qm=V(Az¯)⊕J V(Az¯),

whereV(A¯z)=Rm+2∩T[z]Qmisthe(+1)-eigenspaceandJ V(Az¯)=iRm+2∩T[z]Qmis the(1)-eigenspaceofAz¯.Thatis,Az¯X =X andAz¯J X =−J X,respectively,forany X∈V(Az¯).

Geometrically this meansthattheshapeoperatorAz¯defines areal structure onthe complexvectorspaceT[z]Qm,orequivalently,isacomplexconjugationonT[z]Qm.Since the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of the endomorphismbundle End(T Qm) consisting ofcomplexconjugations.

There isa geometric interpretationof these conjugations. Thecomplex quadricQm can be viewed as the complexification of the m-dimensionalsphere Sm. Through each point [z] Qm there exists a one-parameter family of real forms of Qm which are isometrictothesphereSm.Theserealformsarecongruenttoeachotherunderactionof thecenterSO2oftheisotropysubgroupofSOm+2 at[z].TheisometricreflectionofQm insucharealform Smisanisometry,andthedifferentialat[z] ofsuchareflectionisa conjugation onT[z]Qm.InthiswaythefamilyAofconjugationsonT[z]Qmcorresponds to thefamilyofrealforms Smof Qm containing[z],and thesubspacesV(A)⊂T[z]Qm correspond tothetangentspacesT[z]Sm oftherealformsSm ofQm.

TheGaussequationforQmCPm+1impliesthattheRiemanniancurvaturetensorR¯ ofQmcanbedescribedintermsofthecomplexstructureJandthecomplexconjugations A∈A:

R(X, Y¯ )Z =g(Y, Z)X−g(X, Z)Y +g(J Y, Z)J X−g(J X, Z)J Y 2g(J X, Y)J Z +g(AY, Z)AX−g(AX, Z)AY +g(J AY, Z)J AX−g(J AX, Z)J AY.

(6)

NotethatJ andeachcomplexconjugationAanti-commute,thatis,AJ=−J Aforeach A∈A.

RecallthatanonzerotangentvectorW ∈T[z]Qmiscalled singularifitistangentto morethanonemaximal flatinQm. Therearetwo typesofsingulartangentvectorsfor thecomplexquadricQm:

1. If thereexists aconjugation A∈Asuch thatW ∈V(A), thenW issingular.Such asingulartangentvectoriscalled A-principal.

2. Ifthere exist aconjugation A∈Aandorthonormalvectors X,Y ∈V(A) suchthat W/||W|| = (X +J Y)/√

2, then W is singular. Such a singular tangent vector is called A-isotropic.

For every unit tangent vector W T[z]Qm there exist a conjugation A A and orthonormalvectorsX,Y ∈V(A) suchthat

W = cos(t)X+ sin(t)J Y

for somet [0,π/4].The singular tangentvectors correspond to thevalues t = 0 and t=π/4.If0< t< π/4 thentheuniquemaximalflatcontainingW isRX⊕RJ Y.Later wewillneedtheeigenvaluesandeigenspacesoftheJacobioperatorRW =R(·,W)W for asingularunittangentvectorW.

1. If W is an A-principal singular unit tangent vector with respect to A A, then the eigenvalues of RW are 0 and 2 and the corresponding eigenspaces are RW J(V(A)RW) and(V(A)RW)RJ W,respectively.

2. If W is an A-isotropic singular unit tangent vector with respect to A A and X,Y V(A), then the eigenvalues of RW are 0, 1 and 4 and the corresponding eigenspaces areRW⊕C(J X+Y),T[z]Qm(CX⊕CY) andRJ W,respectively.

3. Somegeneralequations

Let M be a real hypersurface in Qm and denote by (φ,ξ,η,g) the induced almost contactmetricstructure.Note thatξ=−J N, whereN isa(local)unitnormal vector fieldof M and η the corresponding 1-form defined byη(X)=g(ξ,X) forany tangent vector field X on M. The tangent bundle T M of M splits orthogonally into T M = C ⊕Rξ, where C = ker(η) is the maximal complex subbundle of T M. The structure tensorfieldφrestrictedtoCcoincideswiththecomplexstructureJ restrictedtoC,and φξ= 0.

At each point z M we define a maximal A-invariant subspace of TzM, z∈M as follows:

Qz={X ∈TzM|AX∈TzM for allA∈Az}.

(7)

Lemma 3.1.(See[14].)Foreach z∈M we have (i) IfNz isA-principal,thenQz =Cz.

(ii) IFNz isnot A-principal,there existaconjugation A∈Aandorthonormal vectors X,Y V(A) such that Nz = cos(t)X + sin(t)J Y for some t (0,π/4].Then we haveQz=CzC(J X+Y).

Wenow assumethatM isaHopfhypersurface.Thenwehave =αξ,

whereSdenotestheshapeoperatoroftherealhypersurfacesMwiththesmoothfunction α=g(Sξ,ξ) onM.When weconsider thetransformJ X bythe Kähler structureJ on Qm foranyvectorfieldX onM inQm,wemayput

J X=φX+η(X)N

foraunitnormalN to M.Thenwenowconsider theCodazziequation

g((XS)Y (YS)X, Z) =η(X)g(φY, Z)−η(Y)g(φX, Z)2η(Z)g(φX, Y) +g(X, AN)g(AY, Z)−g(Y, AN)g(AX, Z)

+g(X, Aξ)g(J AY, Z)−g(Y, Aξ)g(J AX, Z). (3.1) Putting Z=ξin(3.1)weget

g((XS)Y (YS)X, ξ) =2g(φX, Y)

+g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ).

Ontheother hand,wehave g((XS)Y (YS)X, ξ)

=g((XS)ξ, Y)−g((YS)ξ, X)

= ()η(Y)(Y α)η(X) +αg((+φS)X, Y)2g(SφSX, Y).

Comparingtheprevioustwoequationsandputting X=ξyields Y α= (ξα)η(Y)2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ).

(8)

Reinsertingthis intothepreviousequationyields g((XS)Y (YS)X, ξ)

=2g(ξ, AN)g(X, Aξ)η(Y) + 2g(X, AN)g(ξ, Aξ)η(Y) + 2g(ξ, AN)g(Y, Aξ)η(X)2g(Y, AN)g(ξ, Aξ)η(X) +αg((φS+)X, Y)2g(SφSX, Y).

Altogetherthis implies

0 = 2g(SφSX, Y)−αg((φS+)X, Y)2g(φX, Y) +g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ)

+ 2g(ξ, AN)g(X, Aξ)η(Y)2g(X, AN)g(ξ, Aξ)η(Y)

2g(ξ, AN)g(Y, Aξ)η(X) + 2g(Y, AN)g(ξ, Aξ)η(X). (3.2) Ateachpointz∈M wecanchooseA∈Az suchthat

N = cos(t)Z1+ sin(t)J Z2

forsomeorthonormalvectorsZ1,Z2∈V(A) and 0≤t≤ π4 (seeProposition3in[10]).

NotethattisafunctiononM. Firstofall,sinceξ=−J N,we have N = cos(t)Z1+ sin(t)J Z2,

AN = cos(t)Z1sin(t)J Z2, ξ= sin(t)Z2cos(t)J Z1,

= sin(t)Z2+ cos(t)J Z1. (3.3) Thisimpliesg(ξ,AN)= 0 andhence

0 = 2g(SφSX, Y)−αg((φS+)X, Y)2g(φX, Y) +g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ)

2g(X, AN)g(ξ, Aξ)η(Y) + 2g(Y, AN)g(ξ, Aξ)η(X). (3.4) 4. ProofofTheorem 1

Bytheequation ofGauss,thecurvaturetensor R(X,Y)Z forareal hypersurfaceM in Qm induced from the curvature tensor R¯ of Qm can be described in terms of the complexstructureJ andthecomplexconjugation A∈Aasfollows:

(9)

R(X, Y)Z =g(Y, Z)X−g(X, Z)Y +g(φY, Z)φX−g(φX, Z)φY 2g(φX, Y)φZ +g(AY, Z)AX−g(AX, Z)AY +g(J AY, Z)J AX−g(J AX, Z)J AY +g(SY, Z)SX−g(SX, Z)SY

forany X,Y,Z∈TzM,z∈M.

From this,contractingY andZ onM inQm,we have Ric(X) = (2m−1)X−X−φ2X−2φ2X

−g(AN, N)AX−X+g(AX, N)AN−g(J AN, N)J AX

−X+g(J AX, N)J AN+ (trS)SX−S2X

= (2m−1)X−3η(X)ξ−g(AN, N)AX+g(AX, N)AN

−g(J AN, N)J AX+g(J AX, N)J AN+ (trS)SX−S2X, (4.1) where wehaveusedthefollowing

2m−1

i=1 g(Aei, ei) =TrA−g(AN, N) =−g(AN, N), 2m1

i=1 g(AX, ei)Aei=2m

i=1g(AX, ei)Aei−g(AX, N)AN =X−g(AX, N)AN, 2m−1

i=1 g(J Aei, ei)J AX =2m

i=1g(J Aei.ei)J AX−g(J AN, N)J AX

=−g(J AN, N)J AX, and

2m1

i=1 g(J AX, ei)J Aei =2m

i=1g(J AX, ei)J Aei−g(J AX, N)J AN

=J AJ AX−g(J AX, N)J AN

=X−g(J AX, N)J AN.

Now inthis section we consider only an A-principalnormal vector field N, thatis, AN =N,forarealhypersurfaceMinQmwithparallelRiccitensor.Then(4.1)becomes Ric(X) = (2m−1)X−2η(X)ξ−AX+hSX−S2X, (4.2) where h = trS denotes the mean curvature and is defined by the trace of the shape operatorS ofM inQm.Thenfrom this,as theRiccitensorisparallel,wehave

(10)

0 =2g(Xξ, Y)ξ−2η(Y)Xξ−(XA)Y + (Xh)SY +h(XS)Y (XS2)Y

=2g(φSX, Y)ξ−2η(Y)φSX−(XA)Y + (Xh)SY

+h(XS)Y (XS2)Y, (4.3)

where (XA)Y =X(AY)−A∇XY.Here, AY belongs to TzM, z∈M, from thefact that g(AY,N) = g(Y,AN) = g(Y,N) = 0 for any tangent vector Y on M. Then by puttingY =ξin(4.3),weknowthat

2φSX =(XA)ξ+ (Xh) +h(XS)ξ−(XS2)ξ

=−q(X)J Aξ−αη(X)AN+α(Xh)ξ

+h(XS)ξ−(XS2)ξ, (4.4) wherewehaveput(XA)ξ=q(X)J Aξforacertain1-formqonM (see[11]).Inorder togettheequation(4.4)wehaveusedthefollowing

(XA)ξ=X()−A∇Xξ

= ( ¯X())T −A∇Xξ

=

( ¯XA)ξ+A∇¯Xξ T

−AφSX

=q(X)J Aξ+AφSX+g(SX, ξ)AN−AφSX

=q(X)J Aξ+αη(X)AN,

where(· · ·)T denotesthetangential componentof thevector (· · ·) inQm.Moreover, we get

(XS)ξ=X()−S∇Xξ= ()ξ+αφSX−SφSX, and

(XS2)ξ=X(S2ξ)−S2Xξ= (2)ξ+α2φSX−S2φSX.

Then(4.4)canbe writtenas follows:

2φSX =−q(X)J Aξ−αη(X)AN+α(Xh)ξ+h()ξ+hαφSX−hSφSX

(2)ξ−α2φSX+S2φSX.

(11)

Then itcanbe reducedas follows:

2φSX =−q(X)J Aξ−αη(X)AN +hαφSX−hSφSX

−α2φSX+S2φSX.

From this,ifwetakethetangentialpart,wehavethefollowing:

(2 +α2−hα)φSX =−hSφSX+S2φSX (4.5) for any tangentvector X∈TzM, z∈M, because we haveassumed that the unitvector fieldN isA-principal,thatis,AN =N,andJ Aξ=−AJ ξ=−AN.

On theother hand,by (3.4)inSection3forareal hypersurfaceincomplex quadric Qm withA-principalnormalvectorfieldN,we have

2SφSX =α(φS+)X+ 2φX,

where we used g(X,AN)= 0 and g(J X,Aξ) = g(J X,J AN) = 0 from the facts that A-principalnormalAN =N andanti-commutingAJ=−J A.Fromthis,itfollowsthat

2S2φSX =α(SφS+S2φ)X+ 2SφX

=αα

2(+φS)X+φX +S2φ

X+ 2SφX

=α2

2(+φS)X+αφX+αS2φX+ 2SφX (4.6) Then summingup(4.5)and (4.6), wehave

(2 +α2−hα)φSX =−hα

2(+φS)X+φX +α2

4(+φS)X +α

2φX+α

2S2φX+SφX. (4.7)

Remark4.1.ItisknownthatinBerndtandSuh[4]arealhypersurfaceM isatubeover SminQmifandonlyiftheshapeoperatorS ofM satisfies+φS=foranonzero constantk.Then letuscheck whetheratubeoverSmcouldsatisfy(4.7)ornot.Under ourassumption weknowthat

(2 +α2−hα)φSX =−hαk

2 + 1 φX+α2 4kφX +α

2φX+α

2S2φX+SφX.

If we consider an eigen vector such that SX = λX, then (+φS)X = kφX gives that SφX = (k−λ)φX. From this, together with (4.7) using αk = 2, the principal

(12)

curvaturessatisfyaquadraticequation suchthat αx22(α2−hα+ 1)x= 0.

Then λ= 0 or μ= 2 tan

2r (see [4]). Moreover, the trace hof the shape operator becomesh=α+ (m−1)k(seealso[4]).ButforatubeoverasphereSmweknowthat

2 tan 2r= 2

α(α2−hα+ 1)

= 2(α−h) + 2 α

= 4(m−1) α + 2

α

= 2(2m−1) α

=(2m−1) 2 tan

2r,

whereinthethirdequalityweusedα−h=(m−1)k=2(mα1) andinthefifthequality α=−√

2 cot(

2r) respectively(seeProp. 3.4in[4]).Thisgivesthat2m√ 2 tan

2r= 0, which gives us a contradiction. So we conclude that a real hypersurface in Qm which is atubeover an m-dimensionalsphere Sm does notadmit a parallel Riccitensor. Of course,inthis casetheunitnormalN isA-principal.

IfweputSX =λX, then(4.5)gives

(2 +α2−hα)λφX =−hλSφX+λS2φX.

Moreover,(4.6)givesthat

SφX = αλ+ 2 2λ−αφX.

Fromthis, togetherwiththeaboveformula, wehave (2 +α2−hα)λφX=−hλαλ+ 2

2λ−α

φX+λαλ+ 2 2λ−α

2

φX. (4.8)

Firstweconsider thecasethatλ=0 andμ= αλ+22λ−α arebothnon-vanishing.Thenthe functionμ=αλ+22λ−α satisfies thefollowingequation

μ2−hμ+hα−α22 = 0.

Thenitisequivalentto thefollowing forthefunctionλ λ2−hλ+hα−α22 = 0.

(13)

Combining thesetwo equations,wehave

(λ−μ)(λ+μ−h) = 0.

Then we know that the functions λand μ are distinct. So it implies thath = λ+μ.

Then itfollowsthat

h=λ+μ=α+ (m−1)(λ+μ) =α+ (m−1)h and thisimpliesthath=m−2α ,whichgivesusacontradiction.

Infact,(4.7)withh=m−2α becomes

2 +(m−1)α2 m−2

φSX = α2

2(m−2)(φS+)X−hφX+α2

4 (+φS)X +α

2φX+α

2S2φX+SφX.

From this,bytakingthesymmetricpart,wegetthefollowing

3 +(m−1)α2 m−2

g((φS−Sφ)X, Y) = α

2g((S2φ−φS2)X, Y).

Then for any principalvector X such thatSX =λX and SφX =μφX with distinct principalcurvaturesλandμweknow

(λ−μ)

3 + (m−1)α2 m−2 −α

2(λ+μ)

φX = 0.

This implies3+(2(m−1)+1)α2

2(m−2) = 0,whichgivesacontradiction.

Next we consider the case λ= 0 and μ =2α=0. In this case, we caneasily verify thath=α2.Thentheequation(4.7),togetherwith =2,gives

(α2+ 4)φSX= (+φS)X−hφX+α2

4 (+φS)X +α

2φX+α

2S2φX+SφX. (4.9)

Then bytakingtheskew-symmetricpartof(4.9)wehave (α2+ 5)(φS−Sφ) = α

2(S2φ−φS2). (4.10) From this,using SX=λX andSφX =μφX,where μ=αλ+22λα, thenwehave

(λ−μ)

(α2+ 5)−α

2(λ+μ) φX = 0. (4.11)

(14)

Sinceλ=μand =2,(4.10) impliesthefollowing 0 =α2+ 5−α

2(λ+μ) =α2+ 5−α

2h=α2+ 6,

whichgivesalsoacontradictioneveninthiscase.Soweconcludethattheredonotexist anyrealhypersurfacesincomplexquadricQmwithparallelRiccitensorandA-principal normalvectorfield.

5. ProofofTheorem 2

Inthis sectionwewanttoproveTheorem2forrealhypersurfaceswithparallelRicci tensorand A-isotropic unitnormalvectorfield.Then inthis casewewantto makethe derivativeoftheRiccitensoras follows:

(YRic)X =Y(Ric(X))−Ric(YX)

=3(Yη)(X)ξ−3η(X)Yξ

+g(X,∇Y(AN))AN−g(AX, N)Y(AN) +g((Y(), X)+η(AX)Y() + (Y h)SX

+h(YS)X−(YS2)X. (5.1)

Sincewe assumedthatthe unitnormalN is A-isotropic, bythedefinition inSection3 weknowthatt=π4.ThenbytheexpressionoftheA-isotropicunitnormalvectorfield, (3.3)givesN = 1

2Z1+1

2J Z2.Thisimpliesthat

g(ξ, Aξ) = 0, g(ξ, AN) = 0, g(AN, N) = 0, g(Aξ, N) = 0, and

g(J AN, ξ) =−g(AN, N) = 0.

Herewemayputthat

AN =BN+ρ(N)N,

whereBN = (AN)T denotesthetangentialcomponentofthevectorfieldAN.Soρ(N)= g(AN,N)= 0 givesAN =BN.Thenitfollowsthat

Y(BN) =Y(AN) ={( ¯YA)N+A∇¯YN}T ={q(Y)J AN−ASY}T, and

(15)

Y() ={( ¯YA)ξ+A∇¯Yξ}T

={q(Y)J Aξ+AφSY}T,

where (· · ·)T denotes the tangential component of the vector (· · ·) in Qm. By our as- sumptionof Ricciparallelism,theaboveformulabecomes

0 =3g(φSY, X)ξ−3η(X)φSY +{q(Y)g(J AN, X)−g(ASY, X)}AN

−g(AX, N){q(Y)J AN−ASY}T +{q(Y)g(J Aξ, X) +g(AφSY, X)}Aξ+η(AX){q(Y)J Aξ+AφSY}T

+ (Y h)SX+h(YS)X−(YS2)X. (5.2)

Bytakingtheinnerproduct of(5.2)withtheReebvectorfieldξ,wehave 0 =3g(φSY, X) +g(AX, N)η(ASY) +η(AX)η(AφSY)

+ (Y h)αη(X) +hg((YS)X, ξ)

−g((YS2)X, ξ). (5.3)

Ontheother hand,letususethefollowingcalculation (XS)ξ= ()ξ+αφSX−SφSX, (XS2)ξ= (2)ξ+α2φSX−S2φSX.

From this, together withputting X =ξin(5.2)and usingg(ξ,AN)=g(Aξ,ξ)= 0, we have

3φSY = (Y h)+h(YS)ξ−(YS2)ξ

−g(ASY, ξ)AN+g(AφSY, ξ)

= (Y h)αξ+h{(Y α)ξ+αφSY −SφSY}

− {(Y α2)ξ+α2φSY −S2φSY}

−g(ASY, ξ)AN+g(AφSY, ξ)Aξ. (5.4) Bytakingtheinnerproductinthesecondequalityof(5.4)withtheReebvectorfieldξ, and alsousingg(ξ,AN)=g(Aξ,ξ)= 0,weknowthatthefunctionhα−α2 isconstant onM.Thenitcanbe rearrangedasfollows:

(3 +α2−αh)φSY =−hSφSY +S2φSY −g(ASY, ξ)AN+g(AφSY, ξ)Aξ. (5.5) Since the unit normal N is A-isotropic, we know that g(ξ,Aξ) = 0. Moreover, by Lemma 4.2in[14],wehavethefollowing

2SφSX=α(+φS)X+ 2φX−2g(X, AN)+ 2g(X, Aξ)AN. (5.6)

(16)

Now letus consider thedistribution Q, whichis anorthogonal complementof the maximal A-invariant subspace Q in the complex subbundle C of TzM, z∈M in Qm. Then by Lemma 3.1 in Section 3, the orthogonal complement Q = CQ becomes CQ= Span [AN,Aξ].Fromtheassumptionof=φS onthedistributionQ itcan be easily checked thatthedistribution Q is invariant bythe shape operatorS. Then (5.6)givesthefollowing forSAN =λAN

(2λ−α)SφAN = (αλ+ 2)φAN−2

= (αλ+ 2)φAN−2φAN

=αλφAN.

Then=φAN givesthefollowing

SAξ= αλ

2λ−αAξ. (5.7)

Thenfromtheassumption =φS onQ=CQitfollows thatλ= 2λαλα gives

λ= 0 orλ=α. (5.8)

On the other hand, on the distribution Q we know that AX∈TzM, z∈M, because AN∈Q. So(5.6), together with the factthatg(X,Aξ)= 0 and g(X,AN)= 0 for any X∈Q,implythat

2SφSX=α(+φS)X+ 2φX. (5.9)

Then wecantakean orthonormalbasis X1,· · ·,X2(m−2)∈Q suchthatAXi =λiXi for i= 1,· · ·,m−2.Thenby(5.6)weknow that

SφXi= αλi+ 2 2λi−αφXi.

Accordingly,by(5.8)theshapeoperatorS canbe expressedinsuchawaythat

S=

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎣

α 0 0 0 · · · 0 0 · · · 0 0 0(α) 0 0 · · · 0 0 · · · 0 0 0 0(α) 0 · · · 0 0 · · · 0 0 0 0 λ1 · · · 0 0 · · · 0 ... ... ... ... . .. ... ... · · · ... 0 0 0 0 · · · λm2 0 · · · 0 0 0 0 0 · · · 0 μ1 · · · 0 ... ... ... ... ... ... ... . .. ... 0 0 0 0 · · · 0 0 · · · μm2

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎦

(17)

So onthe distributionQ, forany X,φX∈Q suchthatSX =λX andSφX =μφX, μ=αλ+22λ−α, (5.5)becomesthefollowing

(3 +α2−αh)λφX =−hλSφX+λS2φX

+λg(X, Aξ)AN+λg(AφX, ξ)

=−hλSφX+λμ2φX

=−hλμφX+λμ2φX, (5.10) where weusedCQ= Span [Aξ,AN] inthesecond equality.

Fromthis,ifthereexistsanon-vanishingprincipalcurvatureλ=0,thenanyprincipal curvature of the shape operatoron thedistribution Q satisfies thefollowing quadratic equation

x2−hx+ (αh−α23) = 0. (5.11) Then thediscriminant is alwaysD = (h−2α)2+ 12 >0,we concludethatthere exist two principalcurvaturesλand μsatisfyingh=λ+μ.Moreover, bytheassumptionof parallelRiccitensor∇Ric= 0,and(5.4)thefunctionhα−α2shouldbeconstant.Then summingupthesepropertiesandtheexpressionsabove,letusconsiderthefirstcasefor non-vanishingλ=μas follows:

h=λ+μ=α+ (m−2)(λ+μ)

=α+ (m−2)h. (5.12)

From this,theconstanthα−α2 becomes

hα−α2=α{α+ (m−2)(λ+μ} −α2

= (m−2)(λ+μ)α

= (m−2)hα.

Then the constant implies that α must be constant. Thus the trace of the shape operatorhshouldbeconstant.Sotheabovequadraticequationhasconstantcoefficients.

Ontheother hand,as SAξ=αAξ andSAN =αAN theconstanthbecomes h=λ+μ

= 3α+ (m−2)(λ+μ)

= 3α+ (m−2)h. (5.13)

So if we compare the abovetwo equations (5.12) and (5.13) for the constantmean curvature h, we know that the Reeb function α should vanish, that is, α = 0. From

(18)

this, together withthe assumption m≥4, itfollows thatthe traceh=λ+μ= 0, that is,

λ=−μ. (5.14)

Moreover,fromtheequation (5.11)wemayputtheprincipalcurvature λ=−√

3 tanr and μ=

3 cotr. (5.15)

Since the equation (5.11) has only two distinct solutions λ and μ and the prin- cipal curvature μ related to the almost complex structure φ such that SφX = μφX for SX = λX on the distribution Q, that is, Q = V(λ)⊕V(μ), where dimQ = 2(m 2), V(λ) = {X∈Q|SX = λX} and V(μ) = {X∈Q|SX = μX}. Then, we know that dimV(λ) = dimV(μ) = m 2, because λ and μ are different roots of the equation (5.11) and φV(λ) = V(μ). Moreover, we know that the function ρ = 0 or ρ = α by the property of the vectors AN and .

Summinguptheseresults,togetherwith(5.14)and(5.15),wemayputα= 0,ρ= 0, λ=−√

3 andμ=

3 respectivelywithmultiplicities1,2,(m−2) and(m−2).

Next for the case where λ = 0 we conclude that on the distribution ξ⊕[CQ]⊕Q, whereCQ= Span[AN,Aξ],theshapeoperatorbecomes

S =

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎣

α 0 0 0 · · · 0 0 · · · 0 0 0(α) 0 0 · · · 0 0 · · · 0 0 0 0(α) 0 · · · 0 0 · · · 0 0 0 0 α2 · · · 0 0 · · · 0 ... ... ... ... . .. ... ... · · · 0 0 0 0 0 · · · −α2 0 · · · 0 0 0 0 0 · · · 0 0 · · · 0 ... ... ... ... ... ... ... . .. ...

0 0 0 0 · · · 0 0 · · · 0

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎦

WhenSAN = 0 andSAξ= 0,theexpression fortheconstanthbecomes h=λ+μ=α+ (m−2)(λ+μ).

Thisgivesthatα+ (m−3)h= 0.

Ontheother hand,forλ= 0 we knowμ=α2. Soitfollows thath=λ+μ=α2. Thenthesetwoequationsgiveα2= 2(m−3).Soletusputα=

2(m−3).Thenfrom theexpressionsabovethetraceoftheshapeoperatorbecomesrespectively

h=

2(m−3) 2(m−2)

2(m−3) = 2 2(m−3)

(19)

or

h=

2(m−3) + 2

2(m−3) 2(m−2)

2(m−3) = 2 2(m−3)

according tothe eigenvalue0 orαon thedistributionCQ= Span[Aξ,AN]. Thefirst equation issatisfiedforallofm.Sointhiscasewemayput

α=

2(m−3), γ= 0, λ= 0, andμ= 2 2(m−3) with correspondingprincipalcurvaturespaces

Tα= [ξ], Tγ = [Aξ, AN], φ(Tλ) =Tμ,dimTλ= dimTμ =m−2.

Butifwecomparethelatterequation,wehavem= 3.Thisgivesusacontradiction.So thelattercasecannot beappeared.

Summinguptheabovediscussions,wegiveacompleteproofofourMainTheorem 2 intheintroduction.

Remark5.1.Inthisremarkletuscheck iftheRiccitensorofthetubeM overatotally geodesicCPk inQm,m= 2k,mentionedinBerndtandSuh[3]isparallelornot.Then byatheoremin[3],theshapeoperatorScommuteswiththestructuretensorφ,thatis, =φS.InthiscaseweknowthatthenormalvectorfieldNofM inQ2kisA-isotropic.

So letus suppose thatthe Riccitensor of M is parallel. Then forany Y∈Q such that SY =λY theequation(5.5)givesthat

(3 +α2−αh)λφY =−hλ2φY +λ3φY. (5.16) Ontheotherhand,by(5.6),togetherwiththecommutingproperty=φS,weknow that

(2λ−α)λφY = (αλ+ 2)φY (5.17) From this,wesee thatthefunctionλ=0.Thenby(5.16)withλ=0,we get

λ2−hλ+ (αh−α23) = 0.

Moreover, (5.17)givesthat

λ2−αλ−1 = 0.

From thesetwoequationsweknowthath=αandfinallygivesusacontradiction.Soa tubeoverPkC neverhasparallelRiccitensor.

(20)

Acknowledgments

ThepresentauthorwouldliketoexpresshisdeepgratitudetoProfessorJürgenBerndt forhisgreatcontributionstoourworks[3]and[4].Motivatedbytheseworks,theauthor has considered such a notion of Ricci parallel for real hypersurfaces in the complex quadricQm.Theauthoralsowisheshisthankstotherefereeformanykindsofvaluable commentsto developthefirstversionofthismanuscript.

References

[1]J.Berndt,Y.J.Suh,Realhypersurfacesincomplextwo-planeGrassmannians,Monatsh.Math.127 (1999)1–14.

[2]J.Berndt,Y.J.Suh,RealhypersurfaceswithisometricReebflowincomplextwo-planeGrassman- nians,Monatsh.Math.137(2002)87–98.

[3]J.Berndt,Y.J.Suh,RealhypersurfaceswithisometricReebflowincomplexquadrics,Internat.J.

Math.24(2013)1350050,18 pp.

[4]J.Berndt,Y.J.Suh,ContacthypersurfacesinKähler manifold,Proc.Amer.Math.Soc.23(2015) 2637–2649.

[5]M. Kimura,Realhypersurfaces of a complexprojectivespace, Bull.Aust.Math.Soc. 33(1986) 383–387.

[6]S.Klein,Totallygeodesicsubmanifoldsinthecomplexquadric,DifferentialGeom.Appl.26(2008) 79–96.

[7]S.Kobayashi,K.Nomizu,FoundationsofDifferentialGeometry,vol.II,AWiley–IntersciencePubl., WileyClassicsLibraryEd.,1996.

[8]J.D. Pérez, Y.J. Suh,Real hypersurfaces of quaternionic projectivespace satisfyingUiR = 0, DifferentialGeom.Appl.7(1997)211–217.

[9]J.D.Pérez,Y.J.Suh,TheRiccitensorofrealhypersurfacesincomplextwo-planeGrassmannians, J.KoreanMath.Soc.44(2007)211–235.

[10]H.Reckziegel,Onthegeometryofthecomplexquadric,in:GeometryandTopologyofSubmanifolds VIII,Brussels/Nordfjordeid,1995,WorldSci.Publ.,RiverEdge,NJ,1995,pp. 302–315.

[11]B.Smyth,Differentialgeometryofcomplexhypersurfaces,Ann.ofMath.85(1967)246–266.

[12]Y.J.Suh,Realhypersurfacesincomplextwo-planeGrassmannianswithparallelRiccitensor,Proc.

Roy.Soc.EdinburghSect.A142(2012)1309–1324.

[13]Y.J.Suh,HypersurfaceswithisometricReebflowincomplexhyperbolictwo-planeGrassmannians, Adv.inAppl.Math.50(2013)645–659.

[14]Y.J.Suh,RealhypersurfacesinthecomplexquadricwithReebparallelshapeoperator,Internat.

J.Math.25(2014)1450059,17 pp.

[15]Y.J.Suh,C.Woo,Realhypersurfacesincomplexhyperbolictwo-planeGrassmannianswithparallel Riccitensor,Math.Nachr.287(2014)1524–1529.

Referensi

Dokumen terkait

In the next section, we will use the skills and tools we learned with the HTTP Trigger to create a separate Google Cloud function triggered by a storage event in Firebase..

Figure 5: Vector length explosion in a combinatorial search by vector processors 3 The parallel backtracking technique The parallel backtracking technique avoids explosion of vector