• Tidak ada hasil yang ditemukan

Soft Nanoelectronic Devices Based on Novel 2D Nanomaterials and Self-assembled Organic

N/A
N/A
Protected

Academic year: 2023

Membagikan "Soft Nanoelectronic Devices Based on Novel 2D Nanomaterials and Self-assembled Organic "

Copied!
159
0
0

Teks penuh

When it comes to the interface study between heterogeneous electronic materials, doping of organic semiconductors and 2D nanomaterials is one of the important steps to improve the electrical performance. The experimental results and discussion in this thesis represent a forward-looking insight into charge transport behavior when organic electronic materials and 2D nanomaterials come together and pave the way for the applicability of organic semiconductors in conventional microelectronic infrastructures, which will lead to advances in the realization of soft nanoelectronics units.

Introduction to the Interface Between Graphene and Organic Electronic Materials

Research Background

Synthesis of Graphene and Two-Dimensional Transition Metal Dichalcogenides (2D

Electronic Properties of Graphene and 2D TMDCs

Surface Transfer Doping Using Organic Dopants

Applications Using the Combination of Organic Electronic Materials and Graphene and 2D

Graphene-ruthenium Complex Hybrid Photodetectors With Ultrahigh Photoresponsivity 26

  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

-VDS characteristics of a pristine graphene device using incident light with different intensities under vacuum (~ 10-5 Torr) (VG = 80 V). a) UV-vis spectra of pristine graphene/glass and ruthenium 1/graphene/glass.

Flexible Organic Phototransistor Array with Enhanced Responsivity via Metal-Ligand

  • Introduction
  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

Time response of (c) photocurrent rise and (d) decay for Ru-complex 1/BPE-PTCDI phototransistors and its exponential fitted results (red solid lines) using eqn (5) and (6) respectively, VDS = 100 V; VGS = 100 V. a) Schematic illustration of a 10 × 10 Ru-complex 1/BPE-PTCDI/SU-8 phototransistor device fabricated on flexible transparent PI. Tensile strain was applied during upward bending (top) and conversely compressive strain was applied during downward bending (bottom), scale bar = 20 mm. b) Normalized electron mobility change after bending cycles of tensile strain (black) and compressive bending (red).

Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by

  • Introduction
  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

The substrate was washed with DI water and nitrogen gas. l) The device was separated from the glass base. Evaluation of the response time (left) and recovery time (right) of the acetone sensor based on PTDPPSe-SiC4.

Reduced Pyronin B Doping on Graphene and Organic Semiconductor

  • Introduction
  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

Then, the properties of the devices were measured again after soaking for 24 hours in different solvents (DI water, ethyl alcohol, acetone and chlorobenzene) and heating the devices at 220 oC under N2 conditions. a) Absorption spectra of PyB (black) and rPyB (red) (b) Transmission of graphene and graphene after coating of rPyB (c) Raman spectra of graphene before and after coating of rPyB Kelvin probe (KP) mapping before ( d) and after (e) coating of rPyB on graphene. Solution-processable, selective on-demand contact doping using PDMS stamp. a) 16 x 16 graphene FET array was fabricated on 300 nm SiO2/n++Si wafer using conventional photolithography.

Highly Enhanced Optoelectronic Properties in MoSe 2 with Reduced Organic Cationic Dye

  • Introduction
  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

AFM analysis on before and after doped MoSe2. a) The morphology of as-grown monolayer MoSe2 on Si/SiO2 substrate. Wavelength-dependent photoresponse of rPyB-doped MoSe2 photodetector. a) Transmission characteristic in darkness and different light conditions at VDS = 10 V. b).

Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for

  • Introduction
  • Experimental Section
  • Results and Discussion
  • Conclusion
  • References

Optical microscope images of (a) large area hpGO film on SiO2 devices and (b) hpGO FET with high contact gold electrodes (W/L = 1.2). c) Typical transfer curve obtained at VD = 1 V. Summary of Dirac point displacement by forward and reverse sweeps with different gate voltage sweep ranges.

Two-dimensional Polyaniline From Carbonized Organic Single Crystals in Solid State . 127

Experimental Section

The flask was tightly capped and frozen until very large needle-type crystals developed (Figure 8.1B). Needle-type HAB crystals (white needles, 2.0 g) were taken in the alumina crucible and placed in the oven and degassed the chamber five charge/discharge cycles of argon under reduced pressure (10-4 torr). To simulate the STM image, we have integrated the Kohn-Sham charge density in the energy window of 0.7 eV below and above the Fermi level.

The image shown in Figure 8.2D is the conduction bands part of the charge density in the plane 1 Å around the atomic layer.

Results and Discussion

High-resolution SEM images reveal a more layered graphitic structure and a highly wrinkled morphology (Figure 8.1G; Figure 8.6), which is attributed to the two-dimensional sheet-like appearance of the 2D PANI framework. Moreover, the ohmic contact behavior between 2D PANI and source-drain electrodes was observed from the output curve (Figure 8.19). Furthermore, the field effect behavior disappeared as 2D PANI was doped, as shown in Figure 8.20 and Figure 8.21.

The Ohmic contact between 2D PANI and source-drain electrodes was also maintained with changing doping temperature (Figure 8.20).

Conclusion

Mechanistic representation for the formation of the 2D PANI framework from HAB crystals via C3NH structure with edge groups. 2D PANI is formed spontaneously with the removal of ammonium chloride (NH4Cl) and ammonia (NH3). TGA thermogram obtained from a 2D PANI crystal after annealing (500 °C) with a heating rate of 10 °C/min in air.

Current-voltage curves for 2D PANI measured under a pressure of 5×10-5 torr with increasing doping temperature.

Figure 8.1. Schematic representation of 2D PANI formation. ( A ) Single-crystal X-ray packing  structure of HAB (structure 1); structure of 2D PANI unit with edge groups (C 3 NH, structure 2) and  the spontaneous transformation of HAB crystal unit into the
Figure 8.1. Schematic representation of 2D PANI formation. ( A ) Single-crystal X-ray packing structure of HAB (structure 1); structure of 2D PANI unit with edge groups (C 3 NH, structure 2) and the spontaneous transformation of HAB crystal unit into the

Summary and Perspectives

나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 나 일어났어 :3.89 마음에 안 들어요. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 마음에 안 들어요 망가져요 안 좋아요 망가져요 망가져요 싫어요 망가져요 그것을 좋아하지 않는다 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 그것의 아닙니다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. - 떓덣 騟 묨 ꪈ 딇덛騟 馓 멣 뚏껻 띓 ꝟ 鮋 떓덣 騟 騟 ꆫꔧ ꀧ ꫧ 듟듗 듟듗 듟듗 ꨛ 鯻 鯻騟 ꠻ꉳ ꠻ꉳ ꣏ 끿댤 ꠇ ꠇ 싫다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 싫다.. 싫다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. The 高 the 高 the 髣 the 髿 the 骏 騟 the 鹏 kkak the 鹏 kkak the 騟 the 馓꜇ 髿 the 髣 髣 髿 the 髣 髣 馫 馪 馫 髿 the 馫 馪 馫 髿 the 馫馪 馫 髿 the 馫鼋髣髣骏髣髣鼋骪骈ㅬ 骈ㅬ 骈鼋骈鼋骈髿 문이 무너진다, 문이 무너진다, 문이 무너진다, 문이 무너진다, 문이 무너진다, 문이 무너진다, 문이 무너진다, 문이 무너진다. Anchor 鱫氯〗 魣 髣 〫 に 骐kal 魯 髣 〫 に 騟ㅗ 氯 馣움직이기가 너무 어렵습니다. 너무 시끄러워요. 너무 시끄러워요. 움직이기가 너무 힘들어요. ꜋ 변 ꜋ 변 ꜋ ꜿ 水 ꜋ ꜿ 수꜋ ꜿ 水 ꜋ ꜿ 수 ꜋ ꜿ 수 ꜋ ꜿ 수 ꜋ ꜿ 리 맞아 맞아 맞아 /F[JJI 2FMRTTI 맞아 맞아 맞아 수고鮋ꜿ 高 83)1 ꨗꉷ 鼦鼓 鼦、 鯃ꦫ㉷ 鼦鼦 鼦〜 뮠鮠髿髿题鯃〈鯃鯃 ꦫ. 말이에요. 말이에요. 말이에요. 말이다. 말이에요. 말이에요. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 그것을 좋아하지 않는다 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. 나는 그것을 좋아하지 않는다. ꀧ ꀷ ꫀ 기기꜋.

ꜿ 떯 馓 馓 ꂓ ꂓ 덣 덣 덣 떔 鯃 ꅗ 뚏끳 뚏끳 魳 魳 ꠼ 鱫 鱫 ꝣ ꝣ 馣 ꝣ 뎿 ꁛꁷ 뚏딏 덣 ꝟ鸫鸫 시끄러워, 시끄러워, 시끄러워, 시끄러워, 시끄러워, 너무 시끄러워요 너무 시끄러워요驳 삐삐 髣竣 vibrate 黄 넟 땷 cllatter vibrate 髣 vibrate 鬟 鬟 鬟 vibrate ꁫꉷ鱫馣鱫馣馣鮌髿〧 ꡃ驳馓 鮌驳馓ꡃ驳馓鮌髿〧 ꡃ驳馓 ꁫꉷ鱫馣鱫馣鱫 鮌驳馓 鮌驳馓鮌髿〧 ꡃ驳馓 にꉷ鱫 馣鱫 馣鱫 馣鱫馣鱫 鮌驳馓 鮌驳馓鮌驳馓 鮌髿〧 ꡃ驳馓 ꡃ驳馓. 예, 예, 예, 예, 예, 예, 예, 예. 닻 鱫이 뛰다가 넘어진다. 쌀의 색이 떨어집니다. 쌀색이 떨어집니다.鸻驳馣馣긿 가격 : 3.89점 잘한거 같습니다. 시작하는 것이 좋습니다. 이렇게 하는 것이 좋습니다.

Gambar

Figure 1.1. Schematic illustration of strategies to achieve soft nano electronics.
Figure 1.3. Scheme of the doping process for molecular p-type (left) and n-type doping (right)
Figure 2.2. Raman spectra of graphene/SiO 2 /Si (Bottom) and ruthenium compound
Figure 3.1. Schematic depiction of Ru-complex 1/BPE-PTCDI/Si/SiO 2  phototransistor and chemical  structures of Ru-complex 1, BPE-PTCDI
+7

Referensi

Dokumen terkait

If the decency crime formulated in the Criminal Code is recorded on video, drawn in photos using electronic devices and the internet, it becomes electronic information that