Steel fi ber reinforced concrete panels subjected to impact projectiles with different caliber sizes and muzzle energies
Sittisak Jamnam
a, Buchit Maho
a, Apisit Techaphatthanakon
a, Yoshimi Sonoda
b, Doo-Yeol Yoo
c, Piti Sukontasukkul
a,*
aConstructionandBuildingMaterialsResearchCenter,DepartmentofCivilEngineering,KingMongkut’sUniversityofTechnologyNorth Bangkok,Thailand
bDepartmentofCivilandStructuralEngineering,KyushuUniversity,Fukuoka,Japan
cDepartmentofArchitecturalEngineering,HanyangUniversity,SouthKorea
ARTICLE INFO Articlehistory:
Received7February2020
Receivedinrevisedform7April2020 Accepted9April2020
Keywords:
Fiberreinforcedconcrete Impactprojectile Calibersize Muzzleenergy Impactresistance
ABSTRACT
Inspecialsituationsliketerroristattacks,concretestructuresareoccasionallysubjectedto impactloadssuchasfirearms.Sinceconcreteisbrittle,itoftenshattersintoseveralpieces under impact loadings. In order to alleviate this brittleness, fibers are generally incorporatedintoconcrete.Inthisstudy,steelfiberreinforcedconcretepanelssubjected toprojectileimpactloadswithdifferentgeometrieswasinvestigated.Theimpactorsinthe formofbulletscameinthreedifferentcalibersizes9,11,and7.62mm,providingmuzzle energiesof468,1972,and3259J,respectively.Hookedendtypesteelfiberswereusedat 3volfractionsof1–3%.Thespecimenswerecastinsquarepanels withdimensionsof 400400mmandvaryingthicknessfrom10to100mm.Eachpanelwassubjectedtoa singleimpactatthecenter.Dataintheformofvelocity(priortoandafterimpactevent), failuremodes,andspallingdiameterswerecollected.Resultsshowedthatfourtypical failure modes were commonly found in panels: perforation, scabbing, spalling, and cracking.Forpiercingtypebullets,thethicknessplayedanimportantroleontheimpact resistanceofthepanels.However,forlargeandblunttipbullets,boththicknessandfiber volumefractionmustbeconsideredtogethertoprovidesufficientimpactresistance.
©2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).
1.Introduction
Afirearmreferstoaportablehandheldguncapableofdrivingabulletinaprojectilepathtoatargetbyhighlyexpansive pressuregasresultingfromthechemicalexothermiccombustionofpropellantwithinacartridge[1].Widevarietiesof firearmscanbeclassifiedbybarrellength(handgun,rifle),barreltype,loadingmechanism(automaticormanual),firing mechanism,borediameter,orcalibersize,etc.Themainfunctionofafirearmistoignitethegunpowder,thuscreating pressuretopushoutabullet(aprojectile)downthebarrelandoutofthemuzzle.Bulletsizecanbeclassifiedbydiameteror caliber.Afterignition,abulletturnsintoakineticprojectilewithdifferentmuzzleenergiesandvelocitiesrangingfrom subsonictosupersoniclevels(120–1200m/s)[2].
Underan attackbyfirearm,concretestructures mayexperiencedifferenttypesoffailuremodes suchas,complete fracture,perforation(fullpenetration),penetration,scabbing,spalling,orcracking.Amongthem,theperforationmodecan
*Correspondingauthor.
E-mailaddresses:[email protected],[email protected],[email protected](P.Sukontasukkul).
https://doi.org/10.1016/j.cscm.2020.e00360
2214-5095/©2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/
4.0/).
ContentslistsavailableatScienceDirect
Case Studies in Construction Materials
j o u r n a lh o m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c s c m
causethemostseriousdamageandmustbeconsideredcarefully.Foranybulletproofelement,a minimumprotection requirementisthatitmustalsobeabletopreventperforationordamagefromperforation.
Concreteisabrittlematerial,andtoimproveitsbrittlenesssmallfibersmaybemixedanddistributeduniformlyinit.The effectof fiber bridgingacrossthe crackscanhelp increase ductilityand prevent catastrophicfailure. Fiberreinforced concrete(FRC)isalsoknowntoprovideexcellentimpactresistance[2–6].
Foracertaintype ofimpactforce,suchasprojectileimpact,somestudieshavebeencarriedouttoinvestigatethe resistanceofFRC toprojectileimpactforce.Zhangetal.[7] testedprojectileimpactresistanceofplainand steelfiber reinforcedhighstrengthconcreteusinga12.6mmogivenoseprojectileatvelocitiesrangingfrom620700m/s.Theyfound thatincorporationofsteelfibersintheconcretecouldreducecraterdiameterandcrackpropagation.Luoetal.[8]usedan armor piercingimpact head withdiameter of 37mm to teston highstrength reinforced concrete (RHSC) and high- performancesteelfiberreinforcedconcrete(HPSFRC).Theimpactvelocityofabout365378m/swasusedintheirtest.Their resultsshowedsmashfailureintheRHSCtargetswhiletheHPSFRCtargetsremainintactwithseveralradialcracksonthe frontfaces.Almusallametal.[9]usedabi-conicimpactheadwithdiameterof40mmtravellingatasubsoniclevelvelocityof 300m/s.Thetargetsincludedplainandhybrid(steelandpolypropylene)fiberreinforcedconcreteslabs.Theyconcludedthat theexistenceoffiberinconcreteledtosmallercratervolumesandreductioninspallingandscabbingdamage.
Sukontasukkuletal.[10,11]testeddoublelayerconcretepanelsmadeofrubberizedandsteelfiberreinforcedconcrete subjectedtoimpactprojectilesof9mmand11mmbulletswithmuzzlevelocityof362and270m/s,respectively.Thetest resultsshowedthattheinsertionofasoftmaterial(rubberizedconcrete)layerhelpedabsorbpartoftheimpactenergyand allowedlessimpactforcetoreachtheFRClayer.Mahoetal.[12]testedmultilayerSFRCpanelswitharubbersheetinsertion subjectedto9mmFMJbulletwithmuzzlevelocityof398m/s.Theyconcludedthat,inordertopreventperforation,the impactenergyabsorptionofthepanelmustbeequalorhigherthantheimpactenergyofthebullet.Theincorporationof rubbersheetinsertionhelpedintrappingbulletsandpreventedricocheting.
Basedontheaboveliteraturereviews,mostballistictestsoncementitiousmaterialswerecarriedoutusingprojectiles withvelocityrangingfrom270to700m/s.Thereisstillalackofinformationinprojectilewithvelocityhigherthan700m/s.
Thisstudywasintendedtofillthegapofsuchinformationbyusingbulletswithvelocityuptoabout842m/s(muzzleenergy of3259J).
Inthisstudy,theimpactresistanceoffiberreinforcedconcretepanelssubjectedtoimpactprojectileswithdifferent muzzleenergieswasinvestigated.Threetypesofbulletswereused:9,11(.44magnum),and7.62mm.The9mmcaliber providedmuzzleenergyof468Jandvelocityof342m/swhichisinthesamerangetothesoundvelocityof340m/s.The11 and7.62mmcalibersprovidedmuzzleenergiesof1972and3259Jandvelocitiesof499and842m/s,respectively,whichare consideredinthesupersonicrange(higherthansoundvelocity).Hookedendsteelfiberswereusedat1–3%volumefraction withthicknessofconcretepanelsvariedfrom10to100mm.Resultsintermsoffailuremodes,velocitypriortoandafter impact,andimpactenergyabsorptionwerecollected.Therelationshipbetweenmuzzleenergiesandfailuremode,panel thickness,andfibercontentwasdiscussed.
2.Experimentalprocedure 2.1.Materials
MaterialsusedinthisstudyconsistedofPortlandcementtypeI(ASTMC150),riversandwithFMof2.75,tapwater,and superplasticizerTypeF.Singlehookedendsteelfiberswithtensilestrengthofabout1000MPawasusedat1–3%volume fractions(Table1).Threetypesofbulletswithdifferentdiameterandmuzzleenergieswereused(Table2).
2.2.Mixproportionandspecimenpreparation
Mixproportionoffiberreinforcedconcretewassetatwater/cementratioof0.30,cement/fineaggregateratioof0.50,and fibervolumefractionof1–3%(Table3).Thisyieldedthecompressivestrengthofabout77.1,89.5and89.7MPafor1,2and3%
SFRC,respectively.Topreparethespecimens,cementandsandweremixedtogetherfor3min,thenwaterwasadded,and themixingcontinuedforanother3min.Steelfiberswereaddedintofreshmortarandthemixingcontinuedfor3more minutestoensureuniformdistributionoffibers.
Thespecimensintheformofsquarepanelswithdimensionsof400400mmandvaryingthicknessesfrom100to 600mmwereprepared.Afterthemixinghadfinished,thefreshconcretewaspouredintosteelmolds,compactedwitha steelrodfor25timesandvibratedonashakingtable.Aftercompletion,theexcessconcretewasremovedfromthetop surfaceandthespecimenswerecoveredwithplasticsheetsfor24h.Thespecimensweredemoldedonthenextdayand curedinwaterfor28days.
Table1
PropertiesofSteelFiber.
Materials SpecificGravity Shape Length(mm) Section(mm) AspectRatio(l/d) TensileStrength(N/mm2)
Steel 7.8 HookedEnd 35 dia.-0.55 64 1000
2.3.Projectileimpacttest
General test setup began with placing and locking a specimen on a 400400mm steel support. Two ballistic chronographscapableofmeasuringvelocityfrom1.5–3047m/swereplacedatthefront andbackofthetargetwitha distanceof2500and300mm,respectively.ThreetypesofbulletswereusedasmentionedinTable2.Twostrikingdistances wereadopted:5mfor9mmand11mmcalibertestand15mfor7.62mmcalibertest(Fig.1).Thetestwascarriedoutin accordancetoBallisticResistanceofBodyArmorNIJStandard-0101.06.
Toanalyzetheresults,thespecimenwasshotfromthedistancementionedabove.Thefailuremodesandbulletvelocity priortoimpactwereobtained.Inthecasewheretheperforationfailuremodeoccurred,thebullet’sresidualvelocity(after impact)wasalsomeasured.Bothvelocitiespriortoandafterimpactwerethenusedincalculatingkineticenergiesusing Eq.1.Assumingnoenergylosstootherformsandconstantbulletmassduringtheimpactevent,theenergylossbythebullet canbecalculatedusingEq.2.Alsobyfurtherassumingthatthekineticenergylossbythebulletisequaltotheenergy absorbedbythepanel,theenergyabsorptionbythepanelcanbecalculatedbyEq.3.
InitialKineticEnergy,Ei¼mv22i
ResidualKineticEnergy, Er¼mv22r (1)
EnergyLossbyabullet,
D
E¼EiEr¼mðviv2 rÞ2 (2)EnergyAbsorptionbyPanel, EAb¼
D
E (3)Table2
Propertiesofbullet.
No. Caliber BulletWeight BulletDescription MuzzleVelocity MuzzleEnergy Classification
1 9mm 8.0g FMJ 342m/s 468N.m LowImpactEnergy
2 11mm
(.44Magnum)
15.6g SJHP 499m/s 1942N.m MediumImpactEnergy
3 7.62mm 9.6g FMJ 824m/s 3259N.m HighImpactEnergy
Table3 CastingSchedule.
Name Fibrecontent
(%)
Impacttest Thickness (mm.)
9mm .44
Magnum
7.62 Rifle
1S10 1 10 3 3 –
1S20 20 3 3 –
1S30 30 3 3 –
1S40 40 3 3 –
1S50 50 3 3 –
1S60 60 – 3 –
2S10 2 10 3 3 3
2S20 20 3 3 3
2S30 30 3 3 3
2S40 40 3 3 3
2S50 50 3 3 3
2S60 60 – 3 3
2S70 70 – – 3
2S80 80 – – 3
2S100 100 – – 3
3S10 3 10 3 3 3
3S20 20 3 3 3
3S30 30 3 3 3
3S40 40 3 3 3
3S50 50 3 3 3
3S60 60 – 3 3
3S70 70 – – 3
3S80 80 – – 3
3S100 100 – – 3
where
D
E=energylossbythebulletduringimpact(Joule)EAb=energyabsorbedbythepanel(Joule) m=bulletmass(kg)
Vi=initialbulletvelocity(priortostriking)(m/s) Vr=residualbulletvelocity(afterstriking)(m/s) 2.4.Castingschedule
Foreachtest,atleastthreespecimensweretested.ThetotalnumberofspecimensaresummarizedinTable3.
3.Resultsanddiscussion 3.1.Failurepatterns
Typicalfailurepatternsofapanelsubjectedtoasinglestraightshotcanbeclassifiedinto4modeswhichwerealso definedpreviouslybySukontasukkuletal.[13](Fig.2):
1)Perforation+Backspalling(P/Sp)–Bulletfullypenetratedthroughthepanelthicknesscreatingacircularpuncturehole (orcrateratthefrontsurfaceandbacksurfaces)andspallingareaatthebacksurfacewithflyingdebris(Fig.2a).Thiswas theonlymodethatthebulletpenetratedthroughthethicknessandallowedthemeasurementofbulletvelocityafteran impactevent.AsimilarmodeoffailurewasalsoreportedbyAtapekandKaragoz[14]whenimpacttestswascarriedout ontemperedbainiticsteelusing7.62mmarmorpiercingprojectile.Althoughthetestswerecarriedoutwithasteel material,theperforationfailurewithsmallfrontcraterwasalsoobservedinspecimens.
2)Frontscabbing+Backspalling(Sc/Sp)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzoneandlarge spallingareaatthebacksurfacewithflyingdebris(Fig.2b).Thismodewasoftenfoundinpanelshitbyabulletwith mediumtohighmuzzleenergy(11mmor7.62mm)becausetheenergymustbehighenoughtonotonlycreatespalling piecesbutalsodebondingthemfromfibers(becomingflyingdebris).Typically,thebackspallingdiameterwasalways largerthanthefrontscabbingdiameter.Thisisbecausethecompressionstresswavewaslargeronthebackthanonthe frontsurface[15].
3)Frontscabbing+Backcracking(Sc/Cr)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzoneandcracksat thebacksurfacewithoutflyingdebris(Fig.2c).Thismodeoftenoccurredinpanelswithjustsufficientthicknesstoresist bulletenergy.Thebullet’senergylevelwassufficientincausingcracksbutnotenoughtoovercomethebondstrength betweenfibersandspallingpieces.
Fig.1.ImpactTestSetup.
Fig.2.TypicalFailurePatternsofaSingleStraightShot(a)Perforation,(b)Frontscabbing+Backspalling,(c)Frontscabbing+Backcrackingand(d)Front scabbingonly.
4)Frontscabbing+Nobackdamage(Sc/ND)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzonebutno damageatthebacksurface(Fig.2d).Thismodeusuallyoccurredinpanelswithamuchlargerthicknessthatwascapable ofovercomingbulletenergyentirely.
3.1.1.9mmcaliber
The9mmbulletisthelightestamongthethreebullettypesintermsofweightandmuzzleenergy(8gand468J).The perforationwithbackspallingfailuremode(P/Sp)wasobservedinthepanelswiththicknessesof10and20mmregardlessof theirfibervolumefractions(1S,2Sand3S).ThefailurepatternschangedtoSc/Crmodewhenthepanelthicknessincreased to30mm.Atthethicknessequaledtoorlargerthan40mm,thedamageatthebacksurfacedisappearedandtheSc/NDmode wasobserved.DetailsfailuremodeandbackspallingdiameteraresummarizedinTable4andFig.3.
3.1.2.11mmcaliber(.44magnum)
The.44magnumcaliberistheheaviestbullet(about15.6g)amongthethreecalibers.Althoughithasarelativelylow velocityofabout499m/s(ascomparedto842m/sof7.62mmbullet),becauseoftheweight,itisabletoprovidequitelarge muzzleenergy ofabout1942J.Undertheimpactbythisbullet type,allFRCpanels withthicknessfrom10to30mm experiencedP/Spfailuremode.Atthethicknessof40mm,thefailuremodeshiftedtoSc/Spmodefor2S40and3S40while theperforationmodestilloccurredin1S40.Withtheincreasingthicknessto50mm,thefailuremodeofallpanelschanged Table4
DetailSummaryonPanelType,BulletTypeandFailuremode.
Name 9mm. 11mm. 7.62mm
1S10 Perforation Perforation –
2S10 Perforation Perforation Perforation
3S10 Perforation Perforation Perforation
1S20 Perforation Perforation –
2S20 Perforation Perforation Perforation
3S20 Perforation Perforation Perforation
1S30 Scabbing+Cracking Perforation –
2S30 Scabbing+Cracking Perforation Perforation
3S30 Scabbing+Cracking Perforation Perforation
1S40 Scabbing+Nodamage Perforation –
2S40 Scabbing+Nodamage Scabbing+Spalling Perforation
2S40 Scabbing+Nodamage Scabbing+Spalling Perforation
1S50 Scabbing+Nodamage Scabbing+Cracking –
2S50 Scabbing+Nodamage Scabbing+Cracking Perforation
3S50 Scabbing+Nodamage Scabbing+Nodamage Perforation
1S60 – Scabbing+Nodamage –
2S60 – Scabbing+Nodamage Scabbing+Spalling
3S60 – Scabbing+Nodamage Scabbing+Spalling
2S70 – – Scabbing+Spalling
3S70 – – Scabbing+Spalling
2S80 – – Scabbing+Cracking
3S80 – – Scabbing+Nodamage
2S100 – – Scabbing+Nodamage
3S100 – – Scabbing+Nodamage
Fig.3.FailureMode,BackSpallingDiametervs.FRCPanelThickness(9mm.Caliber).
toSc/Crwithcracklinesatthebacksurface.Thedamageatthebacksurfacedisappeared(Sc/NDmode)whenthethickness wasequaltoorlargerthan60mm.DetailsaresummarizedinTable4andFig.4.
3.1.3.7.62caliber
Althoughthe7.62caliberisthesmallestintermsofsize,duetoitshighvelocity(824m/s),itprovidesthehighestimpact energyof3259J.Withlargemuzzleenergytogetherwiththesharptips,the7.62mmbulletsareconsideredarmorpiercing bullets.TheresultsshowedthattheywerecapableofpenetratingthroughalltypesofSFRCpanelswiththicknessranging from10to50mmeasily(perforationfailuremode).Withincreasingthicknessto60mm,thefailuremodechangedtoSc/Sp modewithflyingdebris.Atthethicknessof80mm,thebackspallingreducedtocrackingandthefailuremodeshiftedtoSc/
Crmode.Beyond80–100mm,thedamageatthebacksurfacedisappearedcompletely(Sc/NDmode).Moredetailsare summarizedonTable4andFig.5.
3.2.Impactenergyabsorption
InordertodeterminetherelationshipbetweentheenergyabsorptionandthicknessofFRCpanels,thedataonvelocities priorandafterimpactofthosefailedunderperforationfailuremodewereused.Althoughthebulletwasdeformedduringan impactevent,itsmasswasassumedconstant.UsingEq.1–3insection2.3,energyabsorptionbyapanelcanbecalculatedand theresultsareshowninFig.2–4.Regardlessofbullettypeandgeometry,theimpactenergyabsorptionwasfoundtoincrease withtheincreasingthickness[16].
Fig.4. FailureMode,BackSpallingDiametervs.FRCPanelThickness(.44magnumCaliber).
Fig.5.FailureMode,BackSpallingDiametervs.FRCPanelThickness(7.62mmCaliber).
3.2.1.9mmcaliber
TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjectedto9mmbulletsareshowninFig.6 andexpressedbyEq.4–6.
Energyabsorptionof1Spanel, E1S9 ¼22:56:t (4)
Energyabsorptionof2Spanel, E2S9 ¼24:02:t (5)
Energyabsorptionof3Spanel, E3S9 ¼24:85:t (6)
Usinganaverageinitialkinetic(muzzle)energyofa9mm.bulletof468JandEq.4to6,theminimumthicknessesfor1S, 2S,and3Spanelsrequiredtomeetthebulletenergywaspredictedequalto20.7,19.5,and18.8mm,respectively.The predictedthicknessesweresomewhatinlinewiththeexperimentalresultsinwhichtheendofperforationfailuremode occurredatthethicknessaround20mmforallFRCpanels.
Although,thethicknesswasfoundtodecreasewiththeincreasingfibercontent,thedifferenceinthicknesswasrelatively small(about0.95mmor5%pervolumefractionoffiber).Thesmalldifferenceimpliedthattheresistanceofthepanel increasedverylittlewiththeincreasingfibercontentanditwasthethicknessthatplayedanimportantroleonimpact resistanceofpanelsunder9mmcaliber.Thereasonwasperhapsduetothenatureofitstip(pointy)andtherelativelysmall calibersizeascomparedtothespecimensize;thedamagebecameverylocalized.
3.2.1.1.11mm.Caliber(.44magnum). TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjected to.44magnumcalibersareshowninFig.7andexpressedbyEq.7–9.
Energyabsorptionof1Spanel, E1S44¼49:75:t (7)
Energyabsorptionof2Spanel, E2S44¼58:90:t (8)
Energyabsorptionof3Spanel, E3S44¼66:60:t (9)
UsingEq.7to9,thethicknessesof1S,2S,and3Spanelscorrespondingtothebulletmuzzleenergyof1942Jwere predictedat39.0,32.9and29.2mm,respectively.Similarly,thethicknesswasfounddecreasewithincreasingfibervolume fraction.Thepredictedthicknessesofallpanelswerewellagreedwiththetestresults.Theperforation(P/Sp)wasobserved in1Spaneluptothethicknessofabout40mm,thepredictedthicknessof39wasabout1mmunderestimatedbyabout 1mmor2.5%.For2Sand3Spanels,theperforationmodestoppedatthethicknesslargerthan30mmwhileEq.8and9 yieldedthethicknessof32.9and29.2mmfor2Sand3S,respectively.
Thedifferenceinthicknessbetweenpanelswithdifferentfibervolumefractionswasfoundinaverageof4.9mm/volume fractionoffiber(or16.7%per volumefractionoffiber). Unlike9mmcalibers, the11mmcaliberyieldedmuch larger differencesinthickness.Itissuspectedthatthetipgeometryandimpactbehaviorofthe.44magnumplaysanimportantrole onthis.The.44magnumisknownasaheavybulletwithflattenedpointheadthatcanproducealotofrecoilandhasalarge
Fig.6.EnergyAbsorptionvs.Thickness(9mm).
muzzleenergyThisallowsthebullettoinsertmorepressureatthetargetandsurroundingarea.Unlikethepiercingtype bulletswithsmalldiameters,whereimpactzoneislocalized,theflattenedpointbulletcreatesalargerimpactzonewhich,in turn,weakensthesurroundingarea.Thisshowedthatwhensubjectedtoimpactloadfrombulletswithlargercalibers,the failurebecomemore globalized.The considerationonthicknessalone maynotbesufficienttoprovideresistanceand preventperforationfromoccurring,boththicknessandfibervolumefractionmustbeconsideredtogetherforoptimum design.
3.2.1.2.7.62mmcaliber. TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjectedto7.62 magnumcalibersareshowninFig.8andexpressedbyEq.10–11.
Energyabsorptionof2Spanel, E2S762¼58:01:t (10)
Energyabsorptionof3Spanel, E3S762¼62:47:t (11)
For7.62mmcaliber,theminimumthicknessesrequiredtomeetitsmuzzleenergyof2Sand3Spanelswerepredictedat 56.2and52.2mm,respectively.Basedontheexperimentalresults,theminimumthicknesswhichallowedtheperforationto occurwasat50mm.Atthethicknessof60mm,thefailuremodechangedtoSc/Sp.Thepredictedthicknessesfellinbetween 50–60mmwhichwereconsideredwellagreedwiththetestresults.Thedifferenceinthicknessbetween2Sand3Spanels wasfoundaround4mmor7.6%pervolumefractionoffiber,whichwasconsideredrelativelylowascomparedtothe11mm (or.44Magnum).Similartothe9mmbullet,the7.62mmisapiercingtypebulletwithpointytip,ittendstopenetrate throughthetargetratherthandamagingthesurroundingarea.Thissimilarlyimpliesthatthepanelthicknessmostlikely playedamoreimportantrolethanthefibercontentinthecaseof7.62mmbullet.However,whendesigningapanelforthis kindofarmorpiercingbullettype,boththicknessandfibervolumefractionmustbeconsideredtogethertoobtainthe
Fig.8.EnergyAbsorptionvs.Thickness(7.62mm).
Fig.7. EnergyAbsorptionvs.Thickness(11mm).
desiredfailuretype.Ifthepurposeistopreventperforation,thenperhapsthethicknesscanbeconsideredalone.However,if thepurposeistopreventperforationanddamageonthebacksurface,thenboththicknessandfibervolumefractionshould beconsideredtogether.
4.Conclusion
Steelfiberreinforced concretepanels behaveddifferently underimpactfromprojectileswithdifferentgeometries, muzzlevelocities,andenergies.Thefailuremodeswerefoundtodependmainlyonthepanelthicknessandfibercontent.
Underthesametypeofprojectile,theshiftingoffailuremodesfromperforationtoscabbingorspallingornodamagewasthe resultofincreasingpanelthicknessandfibercontent.
Forpanelswithathinnerthickness,theperforationfailuremodewasmainlyobserved.Asthethicknessincreased,the failuremodeshiftedtopenetrationwithbackspalling,andthentopenetrationwithoutdamageinthebacksurface.
ConsideringSFRCpanelswiththesamefibercontent,thethicknessinwhichthefailuremodebegantoshiftfromone modetoanotherwasfoundtodependstronglyonthebullettypeandmuzzleenergy.Thethicknessinwhichtheperforation failuremodedidnotoccurwasfoundtobethickerwhensubjectedtobulletswithlargermuzzleenergy.
Regardlessofthebullettype,theimpactenergyabsorptionincreasedwiththeincreasingthicknessandfibercontent.
Underthesamethicknessandfibercontent,theconstantawasobservedtodependonthebullettype.Underimpactby piercingtypeprojectiles(9and7.62mm),thepanelthicknessseemedtoplayanimportantroleontheimpactresistantof FRCpanels.Thiswasbecausethefailuremodeswereverylocalized.Underimpactbybluntandlargerdiameterprojectiles (11mmor.44magnum),ontheotherhand,themainconsiderationshouldbegivenonthefibercontentratherthan thicknessbecausethefailuremodesbecamemoreglobalized.
DeclarationofCompetingInterest
Regardingthesubmissionof a manuscriptonthetitle“SteelFiberReinforcedConcretePanelssubjectedtoImpact ProjectileswithDifferentCaliberSizesandMuzzleEnergies”foryourconsiderationtobepublishedontheCaseStudiesin ConstructionMaterials,theauthorsdeclarethattheyhavenoconflictofinterest.
Acknowledgement
ThisresearchisfundedbyKingMongkut’sUniversityofTechnologyNorthBangkok(contractno.KMUTNB-61-NEW-005) andThailandResearchFundunderResearchandResearchersforIndustries(contractno.MSD62I0063andPHD59I0023).
References
[1]Firearm.inWikipedia.RetrievedMay11,2019fromhttps://en.wikipedia.org/wiki/Firearm.
[2]MuzzleVelocities.inWikipedia.RetrievedMay11,2019fromhttps://en.wikipedia.org/wiki/Muzzle_velocity.
[3]V.S.Gopalaratnam,S.P.Shah,PropertiesofsteelFiberreinforcedconcretesubjectedtoimpactloading,AciMater.J.83(1)(1986)117–126.
[4]V.Bindiganavile,N.Banthia,B.Aarup,Impactresponseofultra-high-Strengthfiber-reinforcedcementcomposite,AciMater.J.99(6)(2002)543–548.
[5]N.Wang,S.Mindess,K.Ko,Fibrereinforcedconcretebeamsunderimpactloading,Cem.Concr.Res.26(3)(1996)363–376,doi:http://dx.doi.org/
10.1016/S0008-8846(96)85024-1.
[6]P.Sukontasukkul,S.Mindess,N.Banthia,Propertiesofconfinedfibre-reinforcedconcreteunderuniaxialcompressiveimpact,Cem.Concr.Res.35(1) (2005)11–18,doi:http://dx.doi.org/10.1016/j.cemconres.2004.05.011.
[7]M.H.Zhang,V.P.W.Shim,G.Lu,C.W.Chew,Resistanceofhigh-strengthconcretetoprojectileimpact,Int.J.ImpactEng.31(7)(2005)825–841,doi:
http://dx.doi.org/10.1016/j.ijimpeng.2004.04.009.
[8]X.Luo,W.Sun,S.Y.N.Chan,Characteristicsofhigh-performancesteelfiber-reinforcedconcretesubjecttohighvelocityimpact,Cem.Concr.Res.30(6) (2000)907–914,doi:http://dx.doi.org/10.1016/S0008-8846(00)00255-6.
[9]T.H.Almusallam,N.A.Siddiqui,R.A.Iqbal,H.Abbas,Responseofhybrid-fiberreinforcedconcreteslabstohardprojectileimpact,Int.J.ImpactEng.58 (2013)17–30,doi:http://dx.doi.org/10.1016/j.ijimpeng.2013.02.005.
[10]P.Sukontasukkul,S.Jamnam,M.Sappakittipakorn,N.Banthia,Preliminarystudyonbulletresistanceofdouble-layerconcretepanelmadeof rubberizedandsteelFiberreinforcedconcrete,Mater.Struct.47(1)(2014)117–125.
[11]P.Sukontasukkul,S.Jamnam,K.Rodsin,N.Banthia,UseofrubberizedconcreteasacushionlayerinbulletproofFiberreinforcedconcretepanels, Constr.Build.Mater.41(2013)(2013)801–811.
[12]B.Maho,P.Sukontasukkul,S.Jamnam,E.Yamaguchi,K.Fujikake,N.Banthia,Effectofrubberinsertiononimpactbehaviorofmultilayersteelfiber reinforcedconcretebulletproofpanel,Constr.Build.Mater.216(2019)476–484,doi:http://dx.doi.org/10.1016/j.conbuildmat.2019.04.243.
[13]P.Sukontasukkul,S.Mindess,N.Banthia,PenetrationResistanceofHybridFibreReinforcedConcreteUnderLowVelocityImpactLoading.Annual ConferenceoftheCanadianSocietyforCivilEngineering,Montreal,Quebec,Canada,(2002).
[14]S.H.Atapek,S.Karagoz,Ballisticimpactbehaviourofatemperedbainiticsteelagainst7.62mmarmourpiercingprojectile,Def.Sci.J.61(1)(2011)81–
87.
[15]A.Richardson,K.Coventry,T.Lamb,D.Mackenzie,Theadditionofsyntheticfibrestoconcretetoimproveimpact/ballistictoughness,Constr.Build.
Mater.121(2016)612–621,doi:http://dx.doi.org/10.1016/j.conbuildmat.2016.06.024.
[16]J.Yahaghi,N.Kamal,Z.CheMuda,P.Shafigh,S.Beddu,Effectofthicknessonimpactresistanceoflightweightaggregateconcrete,Int.J.Appl.Eng.Res.
Dev.11(2016)6753–6756.