• Tidak ada hasil yang ditemukan

Steel fi ber reinforced concrete panels subjected to impact projectiles with different caliber sizes and muzzle energies

N/A
N/A
Protected

Academic year: 2024

Membagikan "Steel fi ber reinforced concrete panels subjected to impact projectiles with different caliber sizes and muzzle energies"

Copied!
10
0
0

Teks penuh

(1)

Steel fi ber reinforced concrete panels subjected to impact projectiles with different caliber sizes and muzzle energies

Sittisak Jamnam

a

, Buchit Maho

a

, Apisit Techaphatthanakon

a

, Yoshimi Sonoda

b

, Doo-Yeol Yoo

c

, Piti Sukontasukkul

a,

*

aConstructionandBuildingMaterialsResearchCenter,DepartmentofCivilEngineering,KingMongkut’sUniversityofTechnologyNorth Bangkok,Thailand

bDepartmentofCivilandStructuralEngineering,KyushuUniversity,Fukuoka,Japan

cDepartmentofArchitecturalEngineering,HanyangUniversity,SouthKorea

ARTICLE INFO Articlehistory:

Received7February2020

Receivedinrevisedform7April2020 Accepted9April2020

Keywords:

Fiberreinforcedconcrete Impactprojectile Calibersize Muzzleenergy Impactresistance

ABSTRACT

Inspecialsituationsliketerroristattacks,concretestructuresareoccasionallysubjectedto impactloadssuchasfirearms.Sinceconcreteisbrittle,itoftenshattersintoseveralpieces under impact loadings. In order to alleviate this brittleness, fibers are generally incorporatedintoconcrete.Inthisstudy,steelfiberreinforcedconcretepanelssubjected toprojectileimpactloadswithdifferentgeometrieswasinvestigated.Theimpactorsinthe formofbulletscameinthreedifferentcalibersizes9,11,and7.62mm,providingmuzzle energiesof468,1972,and3259J,respectively.Hookedendtypesteelfiberswereusedat 3volfractionsof1–3%.Thespecimenswerecastinsquarepanels withdimensionsof 400400mmandvaryingthicknessfrom10to100mm.Eachpanelwassubjectedtoa singleimpactatthecenter.Dataintheformofvelocity(priortoandafterimpactevent), failuremodes,andspallingdiameterswerecollected.Resultsshowedthatfourtypical failure modes were commonly found in panels: perforation, scabbing, spalling, and cracking.Forpiercingtypebullets,thethicknessplayedanimportantroleontheimpact resistanceofthepanels.However,forlargeandblunttipbullets,boththicknessandfiber volumefractionmustbeconsideredtogethertoprovidesufficientimpactresistance.

©2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Afirearmreferstoaportablehandheldguncapableofdrivingabulletinaprojectilepathtoatargetbyhighlyexpansive pressuregasresultingfromthechemicalexothermiccombustionofpropellantwithinacartridge[1].Widevarietiesof firearmscanbeclassifiedbybarrellength(handgun,rifle),barreltype,loadingmechanism(automaticormanual),firing mechanism,borediameter,orcalibersize,etc.Themainfunctionofafirearmistoignitethegunpowder,thuscreating pressuretopushoutabullet(aprojectile)downthebarrelandoutofthemuzzle.Bulletsizecanbeclassifiedbydiameteror caliber.Afterignition,abulletturnsintoakineticprojectilewithdifferentmuzzleenergiesandvelocitiesrangingfrom subsonictosupersoniclevels(120–1200m/s)[2].

Underan attackbyfirearm,concretestructures mayexperiencedifferenttypesoffailuremodes suchas,complete fracture,perforation(fullpenetration),penetration,scabbing,spalling,orcracking.Amongthem,theperforationmodecan

*Correspondingauthor.

E-mailaddresses:[email protected],[email protected],[email protected](P.Sukontasukkul).

https://doi.org/10.1016/j.cscm.2020.e00360

2214-5095/©2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/

4.0/).

ContentslistsavailableatScienceDirect

Case Studies in Construction Materials

j o u r n a lh o m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c s c m

(2)

causethemostseriousdamageandmustbeconsideredcarefully.Foranybulletproofelement,a minimumprotection requirementisthatitmustalsobeabletopreventperforationordamagefromperforation.

Concreteisabrittlematerial,andtoimproveitsbrittlenesssmallfibersmaybemixedanddistributeduniformlyinit.The effectof fiber bridgingacrossthe crackscanhelp increase ductilityand prevent catastrophicfailure. Fiberreinforced concrete(FRC)isalsoknowntoprovideexcellentimpactresistance[2–6].

Foracertaintype ofimpactforce,suchasprojectileimpact,somestudieshavebeencarriedouttoinvestigatethe resistanceofFRC toprojectileimpactforce.Zhangetal.[7] testedprojectileimpactresistanceofplainand steelfiber reinforcedhighstrengthconcreteusinga12.6mmogivenoseprojectileatvelocitiesrangingfrom620700m/s.Theyfound thatincorporationofsteelfibersintheconcretecouldreducecraterdiameterandcrackpropagation.Luoetal.[8]usedan armor piercingimpact head withdiameter of 37mm to teston highstrength reinforced concrete (RHSC) and high- performancesteelfiberreinforcedconcrete(HPSFRC).Theimpactvelocityofabout365378m/swasusedintheirtest.Their resultsshowedsmashfailureintheRHSCtargetswhiletheHPSFRCtargetsremainintactwithseveralradialcracksonthe frontfaces.Almusallametal.[9]usedabi-conicimpactheadwithdiameterof40mmtravellingatasubsoniclevelvelocityof 300m/s.Thetargetsincludedplainandhybrid(steelandpolypropylene)fiberreinforcedconcreteslabs.Theyconcludedthat theexistenceoffiberinconcreteledtosmallercratervolumesandreductioninspallingandscabbingdamage.

Sukontasukkuletal.[10,11]testeddoublelayerconcretepanelsmadeofrubberizedandsteelfiberreinforcedconcrete subjectedtoimpactprojectilesof9mmand11mmbulletswithmuzzlevelocityof362and270m/s,respectively.Thetest resultsshowedthattheinsertionofasoftmaterial(rubberizedconcrete)layerhelpedabsorbpartoftheimpactenergyand allowedlessimpactforcetoreachtheFRClayer.Mahoetal.[12]testedmultilayerSFRCpanelswitharubbersheetinsertion subjectedto9mmFMJbulletwithmuzzlevelocityof398m/s.Theyconcludedthat,inordertopreventperforation,the impactenergyabsorptionofthepanelmustbeequalorhigherthantheimpactenergyofthebullet.Theincorporationof rubbersheetinsertionhelpedintrappingbulletsandpreventedricocheting.

Basedontheaboveliteraturereviews,mostballistictestsoncementitiousmaterialswerecarriedoutusingprojectiles withvelocityrangingfrom270to700m/s.Thereisstillalackofinformationinprojectilewithvelocityhigherthan700m/s.

Thisstudywasintendedtofillthegapofsuchinformationbyusingbulletswithvelocityuptoabout842m/s(muzzleenergy of3259J).

Inthisstudy,theimpactresistanceoffiberreinforcedconcretepanelssubjectedtoimpactprojectileswithdifferent muzzleenergieswasinvestigated.Threetypesofbulletswereused:9,11(.44magnum),and7.62mm.The9mmcaliber providedmuzzleenergyof468Jandvelocityof342m/swhichisinthesamerangetothesoundvelocityof340m/s.The11 and7.62mmcalibersprovidedmuzzleenergiesof1972and3259Jandvelocitiesof499and842m/s,respectively,whichare consideredinthesupersonicrange(higherthansoundvelocity).Hookedendsteelfiberswereusedat1–3%volumefraction withthicknessofconcretepanelsvariedfrom10to100mm.Resultsintermsoffailuremodes,velocitypriortoandafter impact,andimpactenergyabsorptionwerecollected.Therelationshipbetweenmuzzleenergiesandfailuremode,panel thickness,andfibercontentwasdiscussed.

2.Experimentalprocedure 2.1.Materials

MaterialsusedinthisstudyconsistedofPortlandcementtypeI(ASTMC150),riversandwithFMof2.75,tapwater,and superplasticizerTypeF.Singlehookedendsteelfiberswithtensilestrengthofabout1000MPawasusedat1–3%volume fractions(Table1).Threetypesofbulletswithdifferentdiameterandmuzzleenergieswereused(Table2).

2.2.Mixproportionandspecimenpreparation

Mixproportionoffiberreinforcedconcretewassetatwater/cementratioof0.30,cement/fineaggregateratioof0.50,and fibervolumefractionof1–3%(Table3).Thisyieldedthecompressivestrengthofabout77.1,89.5and89.7MPafor1,2and3%

SFRC,respectively.Topreparethespecimens,cementandsandweremixedtogetherfor3min,thenwaterwasadded,and themixingcontinuedforanother3min.Steelfiberswereaddedintofreshmortarandthemixingcontinuedfor3more minutestoensureuniformdistributionoffibers.

Thespecimensintheformofsquarepanelswithdimensionsof400400mmandvaryingthicknessesfrom100to 600mmwereprepared.Afterthemixinghadfinished,thefreshconcretewaspouredintosteelmolds,compactedwitha steelrodfor25timesandvibratedonashakingtable.Aftercompletion,theexcessconcretewasremovedfromthetop surfaceandthespecimenswerecoveredwithplasticsheetsfor24h.Thespecimensweredemoldedonthenextdayand curedinwaterfor28days.

Table1

PropertiesofSteelFiber.

Materials SpecificGravity Shape Length(mm) Section(mm) AspectRatio(l/d) TensileStrength(N/mm2)

Steel 7.8 HookedEnd 35 dia.-0.55 64 1000

(3)

2.3.Projectileimpacttest

General test setup began with placing and locking a specimen on a 400400mm steel support. Two ballistic chronographscapableofmeasuringvelocityfrom1.5–3047m/swereplacedatthefront andbackofthetargetwitha distanceof2500and300mm,respectively.ThreetypesofbulletswereusedasmentionedinTable2.Twostrikingdistances wereadopted:5mfor9mmand11mmcalibertestand15mfor7.62mmcalibertest(Fig.1).Thetestwascarriedoutin accordancetoBallisticResistanceofBodyArmorNIJStandard-0101.06.

Toanalyzetheresults,thespecimenwasshotfromthedistancementionedabove.Thefailuremodesandbulletvelocity priortoimpactwereobtained.Inthecasewheretheperforationfailuremodeoccurred,thebullet’sresidualvelocity(after impact)wasalsomeasured.Bothvelocitiespriortoandafterimpactwerethenusedincalculatingkineticenergiesusing Eq.1.Assumingnoenergylosstootherformsandconstantbulletmassduringtheimpactevent,theenergylossbythebullet canbecalculatedusingEq.2.Alsobyfurtherassumingthatthekineticenergylossbythebulletisequaltotheenergy absorbedbythepanel,theenergyabsorptionbythepanelcanbecalculatedbyEq.3.

InitialKineticEnergy,Ei¼mv22i

ResidualKineticEnergy, Er¼mv22r (1)

EnergyLossbyabullet,

D

E¼EiEr¼mðviv2 rÞ2 (2)

EnergyAbsorptionbyPanel, EAb¼

D

E (3)

Table2

Propertiesofbullet.

No. Caliber BulletWeight BulletDescription MuzzleVelocity MuzzleEnergy Classification

1 9mm 8.0g FMJ 342m/s 468N.m LowImpactEnergy

2 11mm

(.44Magnum)

15.6g SJHP 499m/s 1942N.m MediumImpactEnergy

3 7.62mm 9.6g FMJ 824m/s 3259N.m HighImpactEnergy

Table3 CastingSchedule.

Name Fibrecontent

(%)

Impacttest Thickness (mm.)

9mm .44

Magnum

7.62 Rifle

1S10 1 10 3 3

1S20 20 3 3

1S30 30 3 3

1S40 40 3 3

1S50 50 3 3

1S60 60 3

2S10 2 10 3 3 3

2S20 20 3 3 3

2S30 30 3 3 3

2S40 40 3 3 3

2S50 50 3 3 3

2S60 60 3 3

2S70 70 3

2S80 80 3

2S100 100 3

3S10 3 10 3 3 3

3S20 20 3 3 3

3S30 30 3 3 3

3S40 40 3 3 3

3S50 50 3 3 3

3S60 60 3 3

3S70 70 3

3S80 80 3

3S100 100 3

(4)

where

D

E=energylossbythebulletduringimpact(Joule)

EAb=energyabsorbedbythepanel(Joule) m=bulletmass(kg)

Vi=initialbulletvelocity(priortostriking)(m/s) Vr=residualbulletvelocity(afterstriking)(m/s) 2.4.Castingschedule

Foreachtest,atleastthreespecimensweretested.ThetotalnumberofspecimensaresummarizedinTable3.

3.Resultsanddiscussion 3.1.Failurepatterns

Typicalfailurepatternsofapanelsubjectedtoasinglestraightshotcanbeclassifiedinto4modeswhichwerealso definedpreviouslybySukontasukkuletal.[13](Fig.2):

1)Perforation+Backspalling(P/Sp)–Bulletfullypenetratedthroughthepanelthicknesscreatingacircularpuncturehole (orcrateratthefrontsurfaceandbacksurfaces)andspallingareaatthebacksurfacewithflyingdebris(Fig.2a).Thiswas theonlymodethatthebulletpenetratedthroughthethicknessandallowedthemeasurementofbulletvelocityafteran impactevent.AsimilarmodeoffailurewasalsoreportedbyAtapekandKaragoz[14]whenimpacttestswascarriedout ontemperedbainiticsteelusing7.62mmarmorpiercingprojectile.Althoughthetestswerecarriedoutwithasteel material,theperforationfailurewithsmallfrontcraterwasalsoobservedinspecimens.

2)Frontscabbing+Backspalling(Sc/Sp)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzoneandlarge spallingareaatthebacksurfacewithflyingdebris(Fig.2b).Thismodewasoftenfoundinpanelshitbyabulletwith mediumtohighmuzzleenergy(11mmor7.62mm)becausetheenergymustbehighenoughtonotonlycreatespalling piecesbutalsodebondingthemfromfibers(becomingflyingdebris).Typically,thebackspallingdiameterwasalways largerthanthefrontscabbingdiameter.Thisisbecausethecompressionstresswavewaslargeronthebackthanonthe frontsurface[15].

3)Frontscabbing+Backcracking(Sc/Cr)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzoneandcracksat thebacksurfacewithoutflyingdebris(Fig.2c).Thismodeoftenoccurredinpanelswithjustsufficientthicknesstoresist bulletenergy.Thebullet’senergylevelwassufficientincausingcracksbutnotenoughtoovercomethebondstrength betweenfibersandspallingpieces.

Fig.1.ImpactTestSetup.

(5)

Fig.2.TypicalFailurePatternsofaSingleStraightShot(a)Perforation,(b)Frontscabbing+Backspalling,(c)Frontscabbing+Backcrackingand(d)Front scabbingonly.

(6)

4)Frontscabbing+Nobackdamage(Sc/ND)–Bulletpartiallypenetratedthefrontsurfacecreatingscabbingzonebutno damageatthebacksurface(Fig.2d).Thismodeusuallyoccurredinpanelswithamuchlargerthicknessthatwascapable ofovercomingbulletenergyentirely.

3.1.1.9mmcaliber

The9mmbulletisthelightestamongthethreebullettypesintermsofweightandmuzzleenergy(8gand468J).The perforationwithbackspallingfailuremode(P/Sp)wasobservedinthepanelswiththicknessesof10and20mmregardlessof theirfibervolumefractions(1S,2Sand3S).ThefailurepatternschangedtoSc/Crmodewhenthepanelthicknessincreased to30mm.Atthethicknessequaledtoorlargerthan40mm,thedamageatthebacksurfacedisappearedandtheSc/NDmode wasobserved.DetailsfailuremodeandbackspallingdiameteraresummarizedinTable4andFig.3.

3.1.2.11mmcaliber(.44magnum)

The.44magnumcaliberistheheaviestbullet(about15.6g)amongthethreecalibers.Althoughithasarelativelylow velocityofabout499m/s(ascomparedto842m/sof7.62mmbullet),becauseoftheweight,itisabletoprovidequitelarge muzzleenergy ofabout1942J.Undertheimpactbythisbullet type,allFRCpanels withthicknessfrom10to30mm experiencedP/Spfailuremode.Atthethicknessof40mm,thefailuremodeshiftedtoSc/Spmodefor2S40and3S40while theperforationmodestilloccurredin1S40.Withtheincreasingthicknessto50mm,thefailuremodeofallpanelschanged Table4

DetailSummaryonPanelType,BulletTypeandFailuremode.

Name 9mm. 11mm. 7.62mm

1S10 Perforation Perforation

2S10 Perforation Perforation Perforation

3S10 Perforation Perforation Perforation

1S20 Perforation Perforation

2S20 Perforation Perforation Perforation

3S20 Perforation Perforation Perforation

1S30 Scabbing+Cracking Perforation

2S30 Scabbing+Cracking Perforation Perforation

3S30 Scabbing+Cracking Perforation Perforation

1S40 Scabbing+Nodamage Perforation

2S40 Scabbing+Nodamage Scabbing+Spalling Perforation

2S40 Scabbing+Nodamage Scabbing+Spalling Perforation

1S50 Scabbing+Nodamage Scabbing+Cracking

2S50 Scabbing+Nodamage Scabbing+Cracking Perforation

3S50 Scabbing+Nodamage Scabbing+Nodamage Perforation

1S60 Scabbing+Nodamage

2S60 Scabbing+Nodamage Scabbing+Spalling

3S60 Scabbing+Nodamage Scabbing+Spalling

2S70 Scabbing+Spalling

3S70 Scabbing+Spalling

2S80 Scabbing+Cracking

3S80 Scabbing+Nodamage

2S100 Scabbing+Nodamage

3S100 Scabbing+Nodamage

Fig.3.FailureMode,BackSpallingDiametervs.FRCPanelThickness(9mm.Caliber).

(7)

toSc/Crwithcracklinesatthebacksurface.Thedamageatthebacksurfacedisappeared(Sc/NDmode)whenthethickness wasequaltoorlargerthan60mm.DetailsaresummarizedinTable4andFig.4.

3.1.3.7.62caliber

Althoughthe7.62caliberisthesmallestintermsofsize,duetoitshighvelocity(824m/s),itprovidesthehighestimpact energyof3259J.Withlargemuzzleenergytogetherwiththesharptips,the7.62mmbulletsareconsideredarmorpiercing bullets.TheresultsshowedthattheywerecapableofpenetratingthroughalltypesofSFRCpanelswiththicknessranging from10to50mmeasily(perforationfailuremode).Withincreasingthicknessto60mm,thefailuremodechangedtoSc/Sp modewithflyingdebris.Atthethicknessof80mm,thebackspallingreducedtocrackingandthefailuremodeshiftedtoSc/

Crmode.Beyond80–100mm,thedamageatthebacksurfacedisappearedcompletely(Sc/NDmode).Moredetailsare summarizedonTable4andFig.5.

3.2.Impactenergyabsorption

InordertodeterminetherelationshipbetweentheenergyabsorptionandthicknessofFRCpanels,thedataonvelocities priorandafterimpactofthosefailedunderperforationfailuremodewereused.Althoughthebulletwasdeformedduringan impactevent,itsmasswasassumedconstant.UsingEq.1–3insection2.3,energyabsorptionbyapanelcanbecalculatedand theresultsareshowninFig.2–4.Regardlessofbullettypeandgeometry,theimpactenergyabsorptionwasfoundtoincrease withtheincreasingthickness[16].

Fig.4. FailureMode,BackSpallingDiametervs.FRCPanelThickness(.44magnumCaliber).

Fig.5.FailureMode,BackSpallingDiametervs.FRCPanelThickness(7.62mmCaliber).

(8)

3.2.1.9mmcaliber

TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjectedto9mmbulletsareshowninFig.6 andexpressedbyEq.4–6.

Energyabsorptionof1Spanel, E1S9 ¼22:56:t (4)

Energyabsorptionof2Spanel, E2S9 ¼24:02:t (5)

Energyabsorptionof3Spanel, E3S9 ¼24:85:t (6)

Usinganaverageinitialkinetic(muzzle)energyofa9mm.bulletof468JandEq.4to6,theminimumthicknessesfor1S, 2S,and3Spanelsrequiredtomeetthebulletenergywaspredictedequalto20.7,19.5,and18.8mm,respectively.The predictedthicknessesweresomewhatinlinewiththeexperimentalresultsinwhichtheendofperforationfailuremode occurredatthethicknessaround20mmforallFRCpanels.

Although,thethicknesswasfoundtodecreasewiththeincreasingfibercontent,thedifferenceinthicknesswasrelatively small(about0.95mmor5%pervolumefractionoffiber).Thesmalldifferenceimpliedthattheresistanceofthepanel increasedverylittlewiththeincreasingfibercontentanditwasthethicknessthatplayedanimportantroleonimpact resistanceofpanelsunder9mmcaliber.Thereasonwasperhapsduetothenatureofitstip(pointy)andtherelativelysmall calibersizeascomparedtothespecimensize;thedamagebecameverylocalized.

3.2.1.1.11mm.Caliber(.44magnum). TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjected to.44magnumcalibersareshowninFig.7andexpressedbyEq.7–9.

Energyabsorptionof1Spanel, E1S44¼49:75:t (7)

Energyabsorptionof2Spanel, E2S44¼58:90:t (8)

Energyabsorptionof3Spanel, E3S44¼66:60:t (9)

UsingEq.7to9,thethicknessesof1S,2S,and3Spanelscorrespondingtothebulletmuzzleenergyof1942Jwere predictedat39.0,32.9and29.2mm,respectively.Similarly,thethicknesswasfounddecreasewithincreasingfibervolume fraction.Thepredictedthicknessesofallpanelswerewellagreedwiththetestresults.Theperforation(P/Sp)wasobserved in1Spaneluptothethicknessofabout40mm,thepredictedthicknessof39wasabout1mmunderestimatedbyabout 1mmor2.5%.For2Sand3Spanels,theperforationmodestoppedatthethicknesslargerthan30mmwhileEq.8and9 yieldedthethicknessof32.9and29.2mmfor2Sand3S,respectively.

Thedifferenceinthicknessbetweenpanelswithdifferentfibervolumefractionswasfoundinaverageof4.9mm/volume fractionoffiber(or16.7%per volumefractionoffiber). Unlike9mmcalibers, the11mmcaliberyieldedmuch larger differencesinthickness.Itissuspectedthatthetipgeometryandimpactbehaviorofthe.44magnumplaysanimportantrole onthis.The.44magnumisknownasaheavybulletwithflattenedpointheadthatcanproducealotofrecoilandhasalarge

Fig.6.EnergyAbsorptionvs.Thickness(9mm).

(9)

muzzleenergyThisallowsthebullettoinsertmorepressureatthetargetandsurroundingarea.Unlikethepiercingtype bulletswithsmalldiameters,whereimpactzoneislocalized,theflattenedpointbulletcreatesalargerimpactzonewhich,in turn,weakensthesurroundingarea.Thisshowedthatwhensubjectedtoimpactloadfrombulletswithlargercalibers,the failurebecomemore globalized.The considerationonthicknessalone maynotbesufficienttoprovideresistanceand preventperforationfromoccurring,boththicknessandfibervolumefractionmustbeconsideredtogetherforoptimum design.

3.2.1.2.7.62mmcaliber. TherelationshipbetweentheenergyabsorptionandthicknessofFRCpanelssubjectedto7.62 magnumcalibersareshowninFig.8andexpressedbyEq.10–11.

Energyabsorptionof2Spanel, E2S762¼58:01:t (10)

Energyabsorptionof3Spanel, E3S762¼62:47:t (11)

For7.62mmcaliber,theminimumthicknessesrequiredtomeetitsmuzzleenergyof2Sand3Spanelswerepredictedat 56.2and52.2mm,respectively.Basedontheexperimentalresults,theminimumthicknesswhichallowedtheperforationto occurwasat50mm.Atthethicknessof60mm,thefailuremodechangedtoSc/Sp.Thepredictedthicknessesfellinbetween 50–60mmwhichwereconsideredwellagreedwiththetestresults.Thedifferenceinthicknessbetween2Sand3Spanels wasfoundaround4mmor7.6%pervolumefractionoffiber,whichwasconsideredrelativelylowascomparedtothe11mm (or.44Magnum).Similartothe9mmbullet,the7.62mmisapiercingtypebulletwithpointytip,ittendstopenetrate throughthetargetratherthandamagingthesurroundingarea.Thissimilarlyimpliesthatthepanelthicknessmostlikely playedamoreimportantrolethanthefibercontentinthecaseof7.62mmbullet.However,whendesigningapanelforthis kindofarmorpiercingbullettype,boththicknessandfibervolumefractionmustbeconsideredtogethertoobtainthe

Fig.8.EnergyAbsorptionvs.Thickness(7.62mm).

Fig.7. EnergyAbsorptionvs.Thickness(11mm).

(10)

desiredfailuretype.Ifthepurposeistopreventperforation,thenperhapsthethicknesscanbeconsideredalone.However,if thepurposeistopreventperforationanddamageonthebacksurface,thenboththicknessandfibervolumefractionshould beconsideredtogether.

4.Conclusion

Steelfiberreinforced concretepanels behaveddifferently underimpactfromprojectileswithdifferentgeometries, muzzlevelocities,andenergies.Thefailuremodeswerefoundtodependmainlyonthepanelthicknessandfibercontent.

Underthesametypeofprojectile,theshiftingoffailuremodesfromperforationtoscabbingorspallingornodamagewasthe resultofincreasingpanelthicknessandfibercontent.

Forpanelswithathinnerthickness,theperforationfailuremodewasmainlyobserved.Asthethicknessincreased,the failuremodeshiftedtopenetrationwithbackspalling,andthentopenetrationwithoutdamageinthebacksurface.

ConsideringSFRCpanelswiththesamefibercontent,thethicknessinwhichthefailuremodebegantoshiftfromone modetoanotherwasfoundtodependstronglyonthebullettypeandmuzzleenergy.Thethicknessinwhichtheperforation failuremodedidnotoccurwasfoundtobethickerwhensubjectedtobulletswithlargermuzzleenergy.

Regardlessofthebullettype,theimpactenergyabsorptionincreasedwiththeincreasingthicknessandfibercontent.

Underthesamethicknessandfibercontent,theconstantawasobservedtodependonthebullettype.Underimpactby piercingtypeprojectiles(9and7.62mm),thepanelthicknessseemedtoplayanimportantroleontheimpactresistantof FRCpanels.Thiswasbecausethefailuremodeswereverylocalized.Underimpactbybluntandlargerdiameterprojectiles (11mmor.44magnum),ontheotherhand,themainconsiderationshouldbegivenonthefibercontentratherthan thicknessbecausethefailuremodesbecamemoreglobalized.

DeclarationofCompetingInterest

Regardingthesubmissionof a manuscriptonthetitle“SteelFiberReinforcedConcretePanelssubjectedtoImpact ProjectileswithDifferentCaliberSizesandMuzzleEnergies”foryourconsiderationtobepublishedontheCaseStudiesin ConstructionMaterials,theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgement

ThisresearchisfundedbyKingMongkut’sUniversityofTechnologyNorthBangkok(contractno.KMUTNB-61-NEW-005) andThailandResearchFundunderResearchandResearchersforIndustries(contractno.MSD62I0063andPHD59I0023).

References

[1]Firearm.inWikipedia.RetrievedMay11,2019fromhttps://en.wikipedia.org/wiki/Firearm.

[2]MuzzleVelocities.inWikipedia.RetrievedMay11,2019fromhttps://en.wikipedia.org/wiki/Muzzle_velocity.

[3]V.S.Gopalaratnam,S.P.Shah,PropertiesofsteelFiberreinforcedconcretesubjectedtoimpactloading,AciMater.J.83(1)(1986)117–126.

[4]V.Bindiganavile,N.Banthia,B.Aarup,Impactresponseofultra-high-Strengthfiber-reinforcedcementcomposite,AciMater.J.99(6)(2002)543–548.

[5]N.Wang,S.Mindess,K.Ko,Fibrereinforcedconcretebeamsunderimpactloading,Cem.Concr.Res.26(3)(1996)363–376,doi:http://dx.doi.org/

10.1016/S0008-8846(96)85024-1.

[6]P.Sukontasukkul,S.Mindess,N.Banthia,Propertiesofconfinedfibre-reinforcedconcreteunderuniaxialcompressiveimpact,Cem.Concr.Res.35(1) (2005)11–18,doi:http://dx.doi.org/10.1016/j.cemconres.2004.05.011.

[7]M.H.Zhang,V.P.W.Shim,G.Lu,C.W.Chew,Resistanceofhigh-strengthconcretetoprojectileimpact,Int.J.ImpactEng.31(7)(2005)825–841,doi:

http://dx.doi.org/10.1016/j.ijimpeng.2004.04.009.

[8]X.Luo,W.Sun,S.Y.N.Chan,Characteristicsofhigh-performancesteelfiber-reinforcedconcretesubjecttohighvelocityimpact,Cem.Concr.Res.30(6) (2000)907–914,doi:http://dx.doi.org/10.1016/S0008-8846(00)00255-6.

[9]T.H.Almusallam,N.A.Siddiqui,R.A.Iqbal,H.Abbas,Responseofhybrid-fiberreinforcedconcreteslabstohardprojectileimpact,Int.J.ImpactEng.58 (2013)17–30,doi:http://dx.doi.org/10.1016/j.ijimpeng.2013.02.005.

[10]P.Sukontasukkul,S.Jamnam,M.Sappakittipakorn,N.Banthia,Preliminarystudyonbulletresistanceofdouble-layerconcretepanelmadeof rubberizedandsteelFiberreinforcedconcrete,Mater.Struct.47(1)(2014)117–125.

[11]P.Sukontasukkul,S.Jamnam,K.Rodsin,N.Banthia,UseofrubberizedconcreteasacushionlayerinbulletproofFiberreinforcedconcretepanels, Constr.Build.Mater.41(2013)(2013)801–811.

[12]B.Maho,P.Sukontasukkul,S.Jamnam,E.Yamaguchi,K.Fujikake,N.Banthia,Effectofrubberinsertiononimpactbehaviorofmultilayersteelfiber reinforcedconcretebulletproofpanel,Constr.Build.Mater.216(2019)476–484,doi:http://dx.doi.org/10.1016/j.conbuildmat.2019.04.243.

[13]P.Sukontasukkul,S.Mindess,N.Banthia,PenetrationResistanceofHybridFibreReinforcedConcreteUnderLowVelocityImpactLoading.Annual ConferenceoftheCanadianSocietyforCivilEngineering,Montreal,Quebec,Canada,(2002).

[14]S.H.Atapek,S.Karagoz,Ballisticimpactbehaviourofatemperedbainiticsteelagainst7.62mmarmourpiercingprojectile,Def.Sci.J.61(1)(2011)81–

87.

[15]A.Richardson,K.Coventry,T.Lamb,D.Mackenzie,Theadditionofsyntheticfibrestoconcretetoimproveimpact/ballistictoughness,Constr.Build.

Mater.121(2016)612–621,doi:http://dx.doi.org/10.1016/j.conbuildmat.2016.06.024.

[16]J.Yahaghi,N.Kamal,Z.CheMuda,P.Shafigh,S.Beddu,Effectofthicknessonimpactresistanceoflightweightaggregateconcrete,Int.J.Appl.Eng.Res.

Dev.11(2016)6753–6756.

Referensi

Dokumen terkait