The Classical Statistical Treatment of an Ideal Gas
(Lecture 14)
1
stsemester, 2021
Advanced Thermodynamics (M2794.007900)
è
Let’s derive the thermodynamic properties of an ideal gas, based on the partition function.
For a dilute gas, Maxwell-Boltzmann distribution is applied for an equilibrium state.
We’ve already have the following equations:
We’ll deal with other thermodynamic properties!
Thermodynamic Properties from the Partition Function
The Classical Statistical Treatment of an Ideal Gas
( )
( )
( )
÷ø ç ö è
= æ -
-
=
+ -
-
= -
=
+ -
+
=
Z kT N
N Z
kT
N Z
NkT TS
U F
N Z
T Nk S U
ln ln
~ ln
1 ln
ln 1 ln
ln
µ
è
Continue on.
1. Internal energy
2. Gibbs function (for a single component)
Thermodynamic Properties from the Partition Function
The Classical Statistical Treatment of an Ideal Gas
( )
V V
n j
kT j j
n j
j kT j n
j
j kT j V
n j
j kT n
j
kT j j n
j
j j
T NkT Z
T kT Z
Z e N
Z g U N
e kT g
kT dT e d
T g Z
e g Z
e Z g
N N U
j
j j
j j
÷ø ç ö
è æ
¶
= ¶
÷ø ç ö è æ
¶
= ¶
=
®
÷= ø ç ö è - æ
÷ = ø ç ö è æ
¶
¶
=
=
=
å
å å
å å
å
=
-
=
-
=
-
=
-
=
-
=
ln
1 1
Here,
where
2 2
1
2 1 1
1 1
1
e
e e
e e
e
e e
e e
(
-)
= çæ ÷ö-
=
=
µ
~ Nè
Continue on.
3. Enthalpy
4. Pressure
Thermodynamic Properties from the Partition Function
The Classical Statistical Treatment of an Ideal Gas
( ) ( )
úû ê ù
ë
é ÷
ø ç ö
è æ
¶ + ¶
=
+ úû =
êë ù
é + - +
+ -
-
= +
=
®
- º
T V
T Z NkT
NkT U
N Z
T Nk T U N
Z NkT
TS G
H
TS H
G
1 ln
1 ln
ln ln
ln
( )
T
Z Z
N Z
NkT V F
P F
ö æ¶
ö æ ¶
+ -
-
÷ = ø ç ö
è æ
¶ - ¶
=
ln 1
1 ln
ln
and
è
Partition function is a measure of the states available to the system and is the essential link between the microscopic systems and the thermodynamic properties.
Suppose the system with
Partition Function for a Gas
The Classical Statistical Treatment of an Ideal Gas
. all for
1 j
g
j=
) 0 (let
....
1
0
1 0
2
1
+ + =
+
=
=
- - -=
å
n -e kTe ekTe
jj
e
kTe e
g Z
j
Z e g N N Z
Ne g
N kT j j kT
j j
j ej
e
or
- -
=
=
è
Continue on.
For a sample of gas in a container of macroscopic size, the energy levels are closely spaced and can be regarded as a continuum. Then, the density of states was given by,
Then,
Partition Function for a Gas
The Classical Statistical Treatment of an Ideal Gas
2 ) 4
(e e 3p m3/2e1/2de h
d V
g =
2 / 3 2 / 3 3
0
/ 2 / 1 2
/ 3 0 3
/
2
2 2
4
2 ) 4
(
ö æ
÷ø ç ö
è
= æ
=
=
ò
¥ -ò
¥ -mkT kT kT h m
V
d e
h m d V
e g
Z kT kT
p p p
e p e
e
e e e
for translational kinetic energy of bosons with zero spin
è
Let’s evaluate the thermodynamic properties of a monatomic ideal gas with bosons of zero spin. à Consider translational kinetic energy only.
The partition function and the partial derivatives of its logarithm are,
Then,
Properties of a Monatomic Ideal Gas
The Classical Statistical Treatment of an Ideal Gas
1 2 3 ln
and 1 ln
ln 2 2 ln 3
2 ln ln 3
2
2 2
/ 3 2
T T
Z V
V Z
h V mk
T h Z
V mkT Z
V T
×
÷ = ø ç ö
è æ
¶
= ¶
÷ø ç ö
è æ
¶
® ¶
÷ø ç ö
è + æ
+
=
÷ ® ø ç ö
è
= æ p p
Z
NkT V PV
V NkT NkT Z
P
T
3 1
3 ln
or 1
ln
2
2æ¶ ö = æ × ö =
=
÷ = ø ç ö è
= æ
÷ø ç ö
è æ
¶
= ¶
è
Continue on.
For an entropy,
For specific entropy (per mole basis),
Properties of a Monatomic Ideal Gas
The Classical Statistical Treatment of an Ideal Gas
( )
( )
( )
ïþ ïý ü ïî
ïí
ì ú
û ê ù
ë + é
=
÷+ ø ç ö
è
æ +
=
ïþ ïý ü ïî
ïí
ì ú
û ê ù
ë + é
=
úû ê ù
ë
é ÷- +
ø ç ö
è + æ
+ +
×
= + -
+
=
3 2 / 3 0
0 3
2 / 3
2
ln 2 2 5
where ln
2ln 3 or
ln 2 2 5
1 2 ln
2ln ln 3
2ln 3 2
1 3 ln
ln
h Nk mk
S N S
T V Nk
S
Nh mkT Nk V
h N V mk
T T Nk
N NkT Z
T Nk S U
p p
p
Sackur-Tetrode equation
for the entropy of a monatomic gas
n S s
n Nk R
R c
n S s
s v R T
c
s =
vln + ln +
0where = / ,
v= ( 3 / 2 ) , = / ,
0¹
0/