• Tidak ada hasil yang ditemukan

Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications

N/A
N/A
Protected

Academic year: 2024

Membagikan "Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications"

Copied!
9
0
0

Teks penuh

(1)

Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications

Seung-Man Yang and Gi-Ra Yi

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

(Received 17 October 2002; accepted 3 January 2003)

! "#$ %(channel drop filter), &'!$(optical waveguide), ()*!+(nanolaser), - ./ 0 12 34 56 789 :;< =!

>?@AB*!0 C9D? EFG H. 2 I 3:J 0 12 KL MNOM PQ RS K TU VFWX <Y Z[2H. R \ D]] ^0 _/S ` a?!$ 1Rbc(self-assembly) 0 3:J d?0 VF <Y \ed? KTU fH.

Abstract−Photonic crystals are referred to as semiconductors for light and can control the flow of photons in microscopic space since semiconductors do the flow of electrons in ULSI(Ultra Large Scale Integration) circuits. Therefore, photonic crys- tals have attracted enormous attention due to their potential applications including channel-drop filters, nanolasers, optical waveguides and others that are required for the development of next-generation optical telecommunication devices and optical computers. Photonic crystal balls at micrometer scales can be also used as full-color pixel sources in the pioneering microdis- play devices. Here, we review fundamental concepts of photonic crystals, several approaches to fabrication of three-dimen- sional photonic crystals, and their potential application areas. In particular, we emphasize the colloidal self-assembly scheme that is the most attractive to chemical engineers among several synthetic methods.

Key words: Photonic Crystals, Photonic Band Gap, Colloidal Crystals, Templating

1.

!. " #$, % &' () *+

, "-. / 0 10 234 5*6 78 9 %:; <

=>, (?@ A. BCD 0 0E F G;& H@ I G& JKL:" M NOP QRS TU V IE WXY" %Z[ !. \, " B P] :; ^_`

, ab c4 d0(photon) B %e fg[ !h, ijk 21l( m ln o (% !. d010(photonic

devices) 21l( gpq WX rs8H tl

% 10` g8 u+_` d0 0vwx f.y ! 1\, z, d{(photonic crystal), i| !. 1991} ~g Nature

7€H Maddox & ‚4 ƒ d{ „XY, …†

‡[1]. “If it were possible to make dielectric materials in which electromagnetic waves cannot propagate at certain frequencies, all kinds of almost-magical things would be possible.” @(_` ˆ‰ i] ‚

" Š‹€Œ% m, Ž&gp  ‘8 ’“ ”y ! ŠY4 m, ’“ Z•D – — Vy ! h " d{" d˜™ 23 rs1\H _šb›" WX œ dv] d‹"ž(optical waveguide), Ÿ žw ¡¢(channel-

drop filter) £¤ d10] 23 ¥¦c ! d§

¨¢ ©Y 10 fªq WX 1\ 9 ƒg10 <, m , ": • «¬ ((_ ­:®[2, 3]. d{" ’“ ” y ! m ‹€Œ% d¯ž°(photonic band gap)"± h

" ”PE 0_š ¯ž°& ²³8 ‚4 o` d0 _š ‹€_ ”£´µ d¯ž°4 d{ ¶·_ ¸\y œ d0 _š ¯ž° ¹ !( º»". "] ‚4 v Y H@ d{, m ”PE(semiconductors for light)± ·

To whom correspondence should be addressed.

E-mail: [email protected]

(2)

278

41 3 2003 6

¼(P [4].

½ ¾_` —_ %$ ’”(omnidirectional perfect reflection) YG, " 3t– d{ fª] ­: ¿ Àj_ %$ Á , 'u'0 rs8 (@y ! Ã"ž ": d{

() Àj_ %$` f Ä Å. Æ y o".

2. (Photonic Crystals)

d{(photonic crystals)4 ` Ç ÈÉÊ(Ë vJ ), Ì ÍG" ÎÏ8 ÐÑ[. {Ò0 "- ! ÍG`, {Ó Ô ÍG" m, ’“ ” YG, "q` .N "Õ"

(Fig. 1)[5, 6]. m" ª[Ö, × d{ ¶·_ ØØ ÎÏ8H Ò0Ù_ $ 2Ú[ m(scattered light)"_ +Û(interference) J" „Ü8 Ý.D E8 m" B ÍG ¶· Ž& Þ x ®. ß±` ÍG_ à  ª® m4 ’“ ” !. m 2Ú J4 d' $á(( âV H@ 2Ú®

m l(] Àã a0 ä(] ÓJ_ åæ" !" çR( g L "è d'× ¹ œ 1µmé D=a0 À2n ä(] ©ªÀá_ ê:[.Aq, 5*_ m, f.( # ¥X

–H d¯ž° "ë_ (ì"ë ":[ ! o".

"C 2Ú m +ÛJ, íî8 $á o4 19l( Í '0 Maxwell" lU —ï, ˜$` y !. ݔ8

Maxwell —ï4 0(€" JKL:, ×_ ðx ñ

é, d{& ‚4 m, à  ”ò©ª_ %$` ó$

ô, ˜$ d{_ % ŠY, ‹õy !. Yablonovitch] John[7, 8]

1987}_ ØØ ö÷8 m, à  ¥(8 ÍG ©ª

Š ‹€_ %@ ”YG, ø,  "C Maxwellï,

":@ "ë8 B ¸\ Äù‡, "è ú"ä‹_ %$

û8 b†" "-.ü[9]. d{ ý©_` € ås, Sjy rsÍY4 d¯ž°(photonic bandgap)Hq, " Š d{ ©ª _ ¸\y œ d0 _š ¯ž°` " ”PE 0_

š ¯ž°& ²³8 ‚. , d0 _š ‹€_ ”£´

µ d¯ž°4 Š d{ ©ª ’“ ”gþ ! m

‹€ Œ% ¹ !. d¯ž°4 d{ ¶·_ ÐÑ® Z ÍG

" ÈÉÊ t" Ë ÍG" ÐÑ® Ò0 ¥(_ ß± ÿ . Æ ! 3t– × d¯ž°4 " d{ ©ª oP I .. DBR(Dielectric Bragg Reflection) •?& ‚"

1t– × ¥(8 ©ªé, ^ d¯ž°, , !é, 2t

– Ë 3t– d{ ©ª ×_ Ø t–_ { ©ª ̱P ’ d¯ž°, © ª4 I 6h, f8 H fL—ô" Þ oP 3t– d¯ž° ý©[ !

©ª f !. f × 3t– { ©ª_P

© d¯ž°, ù$ ^ ’ d¯ž°, " Þ

!. z, —(omnidirectional)_ %$ ”" 100%H m ‹€

% ¸\ . " "ë8 b†® o û_`P

“, ^sa—E {_` € 7[x ÐÑ ! [111]

^_ H[111] — Ž& m_ %$`é ¯ž°, "

o [. !. , "] ‚" «¬ — NO m_ %$` ¯ž°" œD Š — a m_

%$`é ”Y, " × "º ’“ ”[ m ‹€Œ

% v ¯ž°(pseudo-bandgap)"± [10].

ß±` d1\ ê:[( # 3t– d{ ©, # ý©

ÈÉÊ" &8 ÐÑ® Ò0©ª "ë8 , i| B

©ª 8H fª_ % ý© ¥ !h, 5*_ d¯

ž° ªÉ(tuning) Ë €, # £à ÈÉÊ \ 8:_

å ý©ÅP "-. !.

3. (Bandgap Engineering)

` …† i] ‚" :Y" ! d{, fª( #$`

m& m" Ž& IG JKL:, $á@j q, IG" m, à  × · 0( «ž ö÷8H Maxwell —ï, ":

@ 2« x ®. a0 ^sa—E {Ò0 u(

u(cavity)" IG _ ÐÑ® z, Fig. 2(a)] ‚4 ® (inverse

opal)4 "C 2 « ˜$ «¬ —_ %$ d¯ž°,

o, Fig. 2(c)] ‚" Hy ![11, 12]. ® ©ª_ % 0 l $á {&_ ß¼^, "] ‚4 ® ©ª ’ 3t–

¯ž°, Ì( #$` IG& u( ÈÉÊ £ 51 2.8"J"

[.j q, "C ÍG4 f gd Œ_` m, à

 "(TiO2) <, ":@ fª !. ® , éž —ô4 Ã"ž ¥Óô(templating)_` Jl“ -( .

, \ d˜™_` " ‹€" 1.4-1.6µmH #"µ " Œ

d{ fª d˜™ ý©0_x I „X ý© ¥f". @C ÍG Uq, 4 " ‹€ Œ¶ m, à h ÈÉÊ

" %! 3.4P` d˜™ d{, #$ I 8î ÍG, ç !. Š“ \ 010 ”PE : !µ , IG : d{4 d10 ŠY& fª—ô ^_

` ­: ¿Y" ä y !. f Fig. 2(b)_ D" 0

× " , IG @ fª® d{` I ¥

¦ c#h, m ”ŠY ù {& g Fig. 2(c) ^ «

¬ — Š‹€% m, • 99% ”gþ !, @¥

![12, 13].

Fig. 1. Schematic of multiple light scattering in a photonic crystal and its reflectance as a function of the wavelength.

(3)

"C ® ©ª gd Œ_` 3t– d¯ž°, © y ! ¿Y_ ©, d¯ž°4 f d'10

` ­:[(_ $À“ % Þ Ù" !. " &ò( #

@ ›" %4 ¯ž°, " ÍG ©ª ©$ ¶R gP

@C «'Å, fg[. A. B {& © ^sa—E {Ò 0©ª ÐÑ® o "(ž )1–0 ÐÑ® o& ‚ 4 ^E(tetrahedron) ©ª Ì o" € %4 ¯ž°, Ì o çRS !. 5* d{ û ý© "(ž ©ª Ì ÍG, ©q 7„[ !h, B ¿Y, @* {&Å ,  d{ fª_` t´% Á¹ o"[14]. "+_P ” PE u, ": 3t– d{ ©ª_ % «'" fg[

. Aé, ò, fªu < 8 »f äx ¥¦ c Þ !. BCD éÝ -. /(8 + fª u,

^, ` …† & ‚" g 0 ¥¦ c, ¿YP Ð fy œµ «¬ d¯ž° 1.2, Ë d{ «' ý©

I „X 3.

4. LiGA

f "(ž ©ª û8 ©( Ã"ž {&

V I .Rµ, 46 çRN ()4 ¥ lu() (LiGA; Lithographe, Galvanoformung, Abformung)H ïØô_ i|, Z !. B „ € %ƒ8H {& 5*_ Cuisin <[15]" Fig.

3(a)] ‚" ÈÉÊ, Ì vE ƒ^ #_ ٖ(point circle)Å, 5ØÓ6(triangular array), "-h ÐÑP7 89, é¬ è Ø ٖ

#_` 3 ² ` Ç — s: x- ïØô(deep x-ray lithography) ©;, ¶. Fig. 3(b) SEM "] ‚4 ©ª , !

, H o". " ©ª – Yablonovitch_ $  fe® o

` l ² x- <" ú¥ó ·À_` u( u" äx ÓY [ "Å4 ` ý{[. !h = u4 "(ž_` )1–

0] ‚4 Ò0#ó_ >"x ®. f u" “ © µ ÿÓ® "(ž ©ª"é, n2 {&_ ß¼^ Ó Y® Yablonovitch©ª d{4 ^sa—E  _

£@ ? 4Ð "J %4 d¯ž°, H.  "C E ©ª <_ $ ïØ —ï& V :@ A ^` ¿8 d0(¿, ây ! Ù Ë Óu+(point or line defects) , B0_ fª —ïP û8 [Öq, " 8:ô (layer-by-layer assembly) ˜C. " —ô4 Kyoto %'D_`

1# E"F :G(wafer fusion)ô" %ƒ8H Ä"[16, 17].

@(` & ‚" ÈÉÊ" = vE ïØô, ` @C ² Fig. 2. (a) Schematic of inverse opaline structure [11] and (b) scanning electron micrograph of silicon inverse opal [12], (c) band diagram of silicon

inverse opal [13].

Fig. 3. (a) Schematic of the fabrication of diamond-like photonic crystals by deep X-ray lithography and (b) its scanning electron micro- graph [15].

(4)

280

41 3 2003 6

H%( « éÅ Ý +Ò H%( ^ #_ DÚ

“ ÐÑ@ ::" Ax ®. Z 0I : H%(Å4 J 0I : H%(_ Ø — A l 0I : H%( J 0I :&

DÚx Aq H%] H% éD Ù_ "(ž ©ª ) 1#ó ( #$ Fig. 4(a)] ‚" l 0I : H%(Å #ó J 0I : H%(Å " u+ #_ P7 AP7 ‡. úK L 0I : H%(Å4 Z 0I : H%(] DÚx Ð Ñ[. !h #ó Z 0I H%(Å " u+ #_ #ó. Ø :, A, ºú Ñ, @ H%(Å" :GJÔ_` ` Mî"

[P7 . "] ‚" 4 :ú ‚4 ©ª [P7 vE H%(

”ò8 A^ PNO % "(ž ©ª %4 d¯ž

°, "x ®.

8:ô4 ::" AD u"µ ðx m" ‹$ P ! Ù 9 Óu+, …n · fLy !.` d‹"ž] ‚4 d1 0 fª :" €Ù" !. Fig. 4(b) E"F :Gô fª

® d{, ":@ …n® d‹"ž 0× "

D". d{ ¯ž° #ó] š£ H%( Q(, ÐÑ¥

( 9 ÈÉÊ_ ß± ÿ. d{ ¯ž° # ¶_ ! m" BR& ‚" S a[^ " d{" ¯ž° # ¶ m4 ’“ ”µ …n® TH ˜é NOx o". "

] ‚" d{ 10 ":^ ¥ U4 u+_` m NO—, iV !h m, W P !. Íë dv(optical fiber) ":$P m —, iV !D " ”_ ¸µ lu+_` 8:y œ. "] ‚" E"F :Gô" @C € Ù" !qP © 6 :_ .RX, Y "v u

" ò, £Z Ù º»".

+P ×fY" ! LiGA() ¥¦c ! o" [B \(holography) ": ïØô". " ()4 @C d–·¢

m" éD` éž +Û]^ _dY À0 photoresist(PR)_

é¬ è „î[  ·À, `@ ¶. d{ ©ª éÅ. "

[18, 19]. Fig. 5(a)] ‚" 4² d–·¢ m4 ^sa—E © ª +ۆa]^ éŵ " Y PR_ Ž^ b4 ]^·

À_`é _d_ d„î" Ý.c o". Jd _d" e

® ·À, f•^ À0 "-.N , , !. " À 0 "u+, beô(CVD)"D B + —ô, ` ÈÉÊ"

= "D TiO2 ŸU è Ñ, @ À0 À$ · f•^

 , , !. " —ô4 {" œ {, , ! €Ù" !, fé ± u" +@ :Y" g o (%®.

5. !(Colloidal Templating)

` …† Š ‹€Œ% m_ % 2ÚÙ 7î4 IG_

À2® Ý ä( Ã"ž a0 hi"D bâ, ˜$ ``“

{gj , !. Ã"ž {(colloidal crystals)"±

·¼ " ©ªÍ4 Fig. 1 Ç B k] ‚" Š { — a® m „ Š ‹€ m_ %$`é l4 ”, , ðx Äùy !. BCD ` …† i] ‚" Ã"ž a0 7 3t– ©ª"m é —_ ß± ”[. DD m ‹€Œ%() «Z ¼. z, «¬ —_ %$ u˜8 ” [ m Œ, z, 3t– d¯ž° ŠY, Ì ©ª . ß

±` " Á½ i] ‚" " ÿÓ® ©ª, z u" IG _ Ò 0©ª ÐÑ® Ã"ž { ® ©ªÍ, fªy !.j 3. 5* d{ ûý©0Å4 "C ©ª ©$ ¶( # Fig. 4. (a) Schematic procedure for the fabrication of photonic crystal by wafer-fusion method and (b) scanning electron micrograph of its waveguide

structure [16, 17].

Fig. 5. (a) Beam arrangement for an fcc interference pattern and (b) scanning electron micrographs of various polymeric photonic crystal struc- tures fabricated by holographic lithography with different filling ratios [18].

(5)

@ @C —ôÅ, fg$ Aq B „ Ã"ž ¥Óô(colloidal

templating)4 3t– d{, fªy ! € ¥¦c ! —ô

"[20-26]. " g ©E8 ÁÂ^, Fig. 6& ‚" Ã"ž

¥Óu A] Bu +“ Pïy !. " „ u B 46   " o` f.R m ”‹€ P( n D=

¢ ä() Õ, Ì ä( oÝ PSD PMMA] ‚4 À0 "-.N À2 Ã"ž ©Å, {Ò0 "-P7 ÐÑ

, { Ò0a0 " u+, l4 ÈÉÊ, h m, à  TiO2(rutile)] ‚4 l±p ÿq ! ©E

(precursor) Ÿ ”­, NOgr è, ¶· Ò0a0 Ñ,

•D :I ":@ ‘8 f• Fig. 2(b)] ‚4 

® ©ª o". u B_` Ã"ž { "u+, l

±p ©E Ÿ  beô, ":@ & ‚4 ÈÉ Ê vE Ÿ? !. , u A_` m ”‹€ P Õ, Ì À2 Ã"ž ©] ¥ l s D=¢ ä( l

±p D=a0 g_ À2gr è À2n tu^ = À0 © Å" Ò0#ó ÐÑ[^` {& g_ L4 D=a0Å4 B

"u+, Ÿx ®. " º Ñ, ^ À0 ©Å4 À$[. f

•[ D=a0Å4 1{[. IG, ÓY. u A B_ £@

+ €Ù" !D {" œ { JÔ d{, ( #$

` Ø J Ñ u Ë vw P] Ã"ž { u&Ê(void

fraction), R@ = À0 a0] l±p D=a0 ·\À

(volume fraction), “ n2@ À2gþ !.j .

` ˆ‰ i] ‚" d{, ":@ gd Œ

m, f.R^ d{ IG Ÿx ÍG4 m, à  2ÍG".j . BCD %·À 2ÍG4 ÈÉÊ" yµ #] ‚4 ^sa—E {©ª %4 ¯ž°, (%y œ.

Š“, Ã"ž {" {, ã ! ×_ v d¯ž

°" ± »fÙ, " !. ` ˆ‰  P

‹€" %! 1.2µm " m, à ×" !µ gd

Œ_` d¯ž°, Þ. ݔ8, Ã"ž {4 ¶

·_ Wý8 P 4 ¶· {(defect), ã !h { ä( I L »fÙ, !µ, Ã"ž ¥ Óô fª® 3t– d{4 :Y_ n z +_ œ.

ß±` 3t– d{, ©( #$` Ã"ž { {, { Ý ! TU —ô, e•D %4 d¯ž°, Ì ©ª j . " ${( # —e D` f® u+

(confined geometry)_` Ã"ž {" Ý.DP7 vP@ {|

Y, }f gP NO[ !h 5*_ ~4 ¥¦, c !.

f u+ ú"äg€ fL[ l89" ¥ "

h …n® l89 _` D=#E 0(ª÷, P7 vP@

– ©ª] Ð, Ì {, 78y !. ¿8 d(¿, â Ù 9 Óu+& ‚4 H#8H {, éÅ( #$` Í 8 € [ ÓÔ 89, …n‚Pa^ [ o". "ƒx Ã"ž {" Ì ! f” »f ${& g_ d { ¶·_ d(¿, ây ! ¿8 u+, …ny !x . x„9 %' XiaB…" "C ý© ¥P !q, Fig.

7(a)] ‚" “ ä( {® 89, dïØô Ë 'ïØô,

":@ fª B #_ Ã"ž {, – ÓÔ Y€ gþ ![27].  l†9, ":@ Fig. 7(b)_ D" o& ‚4 ú"ä¢ ä( ›, N Ã"ž d{‡(photonic crystal chip), fªy P !. , "C 89, ":@ Fig. 7(c)] ‚4 Ã"ž 7î #(colloidal clusters) , P !. " {& Xia B…_` o oÝ l 89, dïØô(photolithography) fª ý© O Í bâ&_` n^, 8ɓ ª É@ oÝ ÓÔ Ã"ž 7î#E , !,

‡[28]. "C Ã"ž 7î # TU d{ fª_ 8 : ¿y o (% !.

ïØô fª® l89 %™_ ú"äë ä( l d8

(droplet), f u+ ê:y P !. z, Ã"ž ©Å, ã

! ˆd(suspension), 8É —ô, ` d8 À2g p B _` Ã"ž ©Å" { NO[P7 ^ 5í8 Ã"ž d{©(photonic balls) , !. " &_`

€ „X åÙ4 .‰x ^ oÝ ä( d8, , !QŠ

o". oÝ d8, fªq ¥ " —ô (À]ô (electrospray), Fig. 8(a)] ‚4 ú"ä\‹, ": ÀŒ(shear rupture), lvE10(microfluidic device) ": —ô" ![29-

31]. " uÅ4 d8 n^" fu f u+ Œ 7î

Fig. 6. Schematics of colloidal templating for 3D photonic crystals.

(6)

282

41 3 2003 6

# ¶_ {" 84 {, , ! €Ù, !µ, Ã"ž {,  px Fig. 8(b)] ‚" ú"äë ä( d{©

éÅ ![30]. , 5*_ Å. "] ‚4 ä( oÝ d{

© &8 fªy ! —ô „_ D "„¥Óô(double templating)" [Ö[32]. "„¥Óô_` 1n ¥Óu_`

ú"äë ä( " Ž ©(hollow spheres) ` ý{[P7 ÐÑ 2n ¥Óu_` " Ž © f u+ :@

B _` Ã"ž d{© Y€gp o". "C ú"äë

ä( d{© " ©Y Ã"ž a0 ä(_ ß± ‘

8 ` Ç ‹€ m, ”y ! ŠY" !µ d{

© ÐÑ@ tl% lƒg10_` 0ý, ây ! 1: 1\ ­:y ! o çRS !.

Ã"ž { fª d{ ©ª ©& M åæ" ! o @C P©Å, ":@ B »fÙÅ" D W $1[.

A, ç !. 5*_ "C Ã"ž { ¶_ {, 0v 0f |Yy ! —ô" [Öq, Ã"ž { ¶_` "

d0„î(two-photon polymerization) ”­, Ýp o". Ý=

"%' BraunB…_` " —ô4 ’ 3t– d‹"ž

…n‚fLy !, g Æ» Nature_ "±" 1

²[(P N[33, 34]. " 0l“ ÁÂ^, Fig. 9(a)_ D" i]

‚" f.R m ”‹€ ä( Õ, Ì © "-.

N Ã"ž l89 #_` Y€g‘ {" œ {, é¬

 "d0„î, Ýp ;E] ²gf { u+_ ŸU. 3t

– {¶· …n® u+_`é "d0„î" Ý.c !P7 Fig.

9(b)] ‚" u’Ù×(confocal microscope), ˜@ “”ì •"

–(femtosecond-laser) ª è ”­ ·À, :I f•. ú H n_` Ã"ž { Ž u+, beô, ` Ÿ © 2(HF) f• "d0„î ÓY®

À0 ÑÀ$^ Fig. 9(c)] ‚4 d‹"ž 5í8 . "

ƒx 4 d{4 ¯ž° "¶ ‹€, Ì4 m, ’“ ”gp µ Fig. 9(d)_ D" i] ‚" ÓY® Ÿ , ˜@ d™K — Fig. 7. (a) Colloidal crystals with (100) plane surface were grown in large

area on micropatterned substrates [27]. (b) colloidal photonic crystal chip that was assembled inside microchannels. (c) self-assembled col- loidal clusters [30].

Fig. 8. (a) Schematic of the generation of spherical photonic crystal balls and (b) their scanning electron micrograph [30].

(7)

[  V !.

46 d{ ©ª fª_ å ý© $ #. _`

ˆ‰ i] ‚", "ë8 n2_ ß¼^, "(ž Ò0©ªD, – Ó D=#E ^sa—©ª %4 d¯ž°, v d010` ­:ó l4 o çRS !. \6 LiGA ": u, E"F :Gu" f8"Dú " b8 H Ä". BCD "C uÅ4 f 23_ WX 10

%; |2, (_ ò, £×f8H u". " &ò ( #$ Pa® o" Ã"ž ¥ÓôHq \6 ©Ó a0

^sa—©ª, " ©ª Yu8 fª[Ö. ý©

—4 Ã"ž 7îE u, ":@ "(ž ©ª] ‚4 d

¯ž°" %4 d{, fª o "_ % ý© NO

„". Fig. 10_ H D=˜, ": d{ fª u4 B D Ä"[35]. £7 u0E ò, ”ò8".` ×f8H ^_

` äx ¥¦ c Þé, Ã"ž ": J û8 ý© {&

± ù^_` I ! ± 3.

6. "#$%&

Í8H —ô_ ¸  |ÍÀ0 H¿>_ (ì d{

©ª …n_ % ý©P gL[Öq, DNA] ‚4 |ÍÀ0 0(ª÷ 89, ":R gP B %ƒ8H Ä"[36, 37]. |Í

E DNA ©Y ;EH r2_ qF(A), ©F(G), ™š

(T), g”™(C) <& ‚4 4² ›( ¸\h "Å JK+ J8

(A-T, G-C)" ‘8H 1{î_ $ DNA "„ D ©ª

ÓY® Ù4 % À0 |Í' € rs8H ý© Y& „ D

± y !. "C ›( JY, D=a0 {E fª_ 8 :y º I ÎÏ8H D=a0 ÐÑ, 8 , !. z,

Š ›(`Ñ(sequence), N œg•™ž(oligonucleotide) D=a0 ƒ^_ àegr ž àe® ›(`Ñ& J8 {î y ! ›(`Ñ, F Ë Ç œg•™ž ê:@

Ã"ž JÔ fª® D=a0 ` {îg‘ "Å a0 ÎÏ 8 ÐÑy ! o". ©E8 Fig. 11& ‚" DNA "

: D=a0 { &, Pïy !. , Z íŸ D

=a0(A, B) ƒ^_ JY" œ ›(`Ñ, N Z íŸ œ

g•™ž àegr è " À2IJ_ À2gr. " º D

=a0] àe, vP( #@ œg•™ž  , à egpR ƒ^ ŠY_ ß± š(, ò( Ë ™œ(] ‚ 4 å¿((functional group) óq@j . 4 a0 ×_  

( ™œ( óq œg•™ž ¥ :. a0_

àe® œg•™žÅ" JY" œµ Z íŸ a0Å

" ­7[  e À2n "-x ®. , àe_ : Z íŸ œg•™ž] JY" ! ›(`Ñ, ¡_

F ý{I²0(linker) DNA e® À2J_ ¢^ JY" ! ›(`Ñ£ 1{î_ @ D=a0 A, B ¤% ý{[

. {Ò0 "¥ o". "] ‚" DNA ": {4 /P l@ ¥^ g \À2" Ý.Dx ®. "C —ï fª® D=

{E d{ ÍG"D ¦` <, # 1\ ê: !h DNA ‘8 {î ŠY, ": §H <, fª@ 0 ƒg10, DNA ‡ < v: 10 fªy !. Fig. 12 "C —ï, ú Fig. 9. Photonic crystal waveguide by two-photon polymerization inside

colloidal crystals [34].

Fig. 10. Diamond-like photonic crystals fabricated by nanorobotic manip- ulation of microspheres. Scale bar is 5 and the diameter of par- ticles is 0.9 [35].

Fig. 11. Schematic of DNA-mediated colloidal crystallization of nanospheres.

(8)

284

41 3 2003 6

"äa0_ 8:gr {&` Z ä( ú"ä a0

$N —ï 7î[ց ‡[37]. Ã"ž ©ª 6 f.® {& é, d¨ fª # &8H —ô

` ¿Y, $À“ g ".

7. ' (

% IT23 *+, "-. / 010234 5*6 78 # =>, (?@ AD, 0 F Í8 fY H@

%! 2010}×_ 78P] P n_ "¼x ®. "

H@ d023 „XY" $ !h, " # d˜™

10 ²â& D d§¨¢ # (”() ²â4 ()N©, _x g%8 X©± 3. d{4 ` fg® i] ‚

" 023& ƒg1023_ H% () X !, o (%

®. d{ "ë8, û8 ¿Y,  fg Yablonovitch 5* Scientific American_ ⃠ª…_` 0(ª÷Ó d{

­:Àj 0 23 rs10H d{v, D=•"–, ì n P(ultrawhite pigment), ±« ¥‹ e¬D, reflectors, light- emitting diodes(LED), d0(photonic integrated circuits)<, Å Ö[4]. d{ u4 % &'() ý© kÕ" BC­" Í', ', 0u' < – íî8 8:$j. B „ d { fªu € ¥¦ c ! Ã"ž 0(ªî ()4 B rs (” () ÀjH a0 fª] 7îE ÓY ()"®_ ”­u ', vE' < 'u' rs (½ "ë, *+ !( º

»_ 'u'0Å" (@y ! ·À" I ~. 21l € ¥

¦c rs () Hï[ ! d{ () Àj("ˆ¯ 1999 }P 12° 17Ý K ª)_ 'u'0Å" ~4 ås, ()8 H (@ y !( iÚ.

) *

½ ý© 21l( kë™.3 …÷® ¿Ó ú"äg¯±

3 – "-.ü, b².

+,-.

1. Maddox, J., Nature, 348, 481(1990).

2. Joannopoulos, J. D., Villeneuve, P. R., Fan, S., Nature, 386, 143(1997).

3. Ryu, H.-Y., Park, H.-G., Lee, Y.-H., IEEE Journal of Selected Top- tics in Quantum Elec. 8, 891(2002).

4. Yablonovitch, E., Sci. Am. 285, 35(2001).

5. Johnson, S. G., Joannopoulos, J. D., “Photonic Crystals: The Roads from Theory to Practice,” Kluwer Academic Publishers, Massachu- setts(2002).

6. Joannopoulos, J. D., Meade, R. D., Winn, J. N., “Photonic Crystals:

Molding the Flow of Light,” Princeton University Press, New Jersey (1995).

7. Yablonovitch, E., Phys. Rev. Lett., 58, 2059(1987).

8. John, S., Phys. Rev. Lett., 58, 2488(1987).

9. Yablonovitch, E., Gmitter, T. J., Knight, P. L.: Phys. Rev. Lett., 67, 2259(1991).

10. Yi, G.-R., Yang, S.-M., J. Opt. Soc. Am. B, 18, 1156(2001).

11. John, S., Phys. Rev. E. 58, 3896(1998).

12. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.

W., Lopez, C., Meseguer, F., Mondia, J. P., Ozin, G. A., Toader, O., van Driel, H. M., Nature, 405, 437(2000).

13. Vlasov, Y. A., Bo, X. Z., Sturm, J. C., Norris, D. J., Nature, 414, 289 (2001).

14. Garcia-Santamaria, F., Lopez, C., Meseguer, F., Lopez-Tejeira, F., Sanchez-Dehesa, J., Miyazaki, H. T., Appl. Phys. Lett., 79, 2309 (2001).

15. Cuisin, C., Chelnokov, C., Lourtioz, J.-M., Decanini, D., Chen Y., Appl. Phys. Lett., 77, 770(2000).

16. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Science, 289, 604 (2000).

17. Noda, S.: Physica B, 279, 142(2000).

18. Cambell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., Turb- erfield, A. J., Nature, 404, 53(2000).

19. http://www.itg.uiuc.edu/publications/forums/2001-12-13/2002-04-25/index.htm.

20. Imhof, A., Pine, D. J., Nature, 389, 948(1997).

21. Velev, O. D., Jede, T. A., Lobo, R. F., Lenhoff, A. M., Nature, 389, 447(1997).

22. Braun, P. V., Wiltzius, P., Nature, 402, 603(1999).

23. Subramania, G., Constant, K., Biswas, R., Sigalas, M. M., Ho, K.- M., Appl. Phys. Lett., 74, 3933(1999).

24. Subramanian, G., Manoharan, V. N., Thorne, J. D., Pine, D. J., Adv.

Mater. 11, 1261(1999).

25. Yan, H., Blanford, C. F., Holland, B. T., Parent, M., Smyrl, W. H., Stein, A., Adv. Mater. 11, 1003(1999).

26. Vlasov, Y. A., Yao, N., Norris, D. J., Adv. Mater., 11, 165(1999).

27. Yin, Y, Xia, Y. N., Adv. Mater., 14, 605(2002).

28. Yin, Y, Xia, Y. N., Adv. Mater., 13, 267(2001).

29. Yi, G.-R., Moon, J. H., Yang, S.-M., Adv. Mater., 13, 1185(2001).

30. Yi, G.-R., Manoharan, N., Klein, S., Brzezinska, K. R., Pine, D., Lange, F. F., Yang, S.-M., Adv. Mater., 14, 1137(2002).

31. Thorsen, T., Roberts, R. W., Arnold, F, H., Quake, S. R., Phys. Rev.

Lett. 86, 4163(2001).

32. Yi, G.-R., Moon, J. H., Manoharan, V. N., Pine, D. J., Yang, S.-M., J.

Am. Chem. Soc., 124, 13354(2002).

32. Lee, W., A. Pruzinsky, A., Braun, P., Adv. Mater., 14, 217(2002).

Fig. 12. Scanning electron micrographs of sample set of colloidal build- ing blocks assisted by DNA as linker molecules. (a, b) partially formed, (c) completely formed, and (d) larger aggregates. Scale bar is 400 nm [37].

(9)

Referensi

Dokumen terkait