Numerical Solution of
1D Single Phase Flow Equation
[ ]
Hoonyoung Jeong
Department of Energy Resources Engineering Seoul National University
SNU ERE Hoonyoung Jeong
Flow Equation
β’
πππ₯
π ππ΅
ππ
ππ₯
+
ππ΄ππ₯
=
πππ‘
π π΅
β’ We canβt move π, π, π΅, π out of π ππ₯ Ξ€ and π ππ‘ Ξ€ Because π, π, π΅, π depends on π₯ and π‘ .
βπ, π΅ : functions of π, π π₯, π‘
β Heterogeneous : k π₯
βπ, π΅ : functions of π π₯, π‘
β
ππB
is dependent of π₯ β f π₯
β’ Here, we assume a fluid viscosity is constant
SNU ERE Hoonyoung Jeong
How to Numerically Approximate Derivatives?
π
ππ₯
π ππ΅
ππ
ππ₯ + π
π΄ππ₯ = π
ππ‘
π π΅
SNU ERE Hoonyoung Jeong
Approximation of Spatial Term
π
ππ₯ π π₯ ππ
ππ₯
π= π
π+ Ξ€1 2Ξπ₯
2π
π+1β π
π+ π
πβ Ξ€1 2Ξπ₯
2π
πβ1β π
π= 1 Ξπ₯
2π
ππ΅
π+1/2π
π+1β π
π+ 1 Ξπ₯
2π
ππ΅
πβ1/2π
πβ1β π
π= 1 Ξπ₯
21 ππ΅ Ξ€
π+1+ 1/ ππ΅
π1 π Ξ€
π+1+ Ξ€ 1 π
ππ
π+1β π
π+ 1 Ξπ₯
21 ππ΅ Ξ€
πβ1+ 1/ ππ΅
π1 π Ξ€
πβ1+ Ξ€ 1 π
ππ
πβ1β π
π= π
π+1/2π
π+1β π
π+ π
πβ1/2π
πβ1β π
πThis is called transmissibility ππ+1/2
SNU ERE Hoonyoung Jeong
Approximation of Temporal Term
π
ππ‘ π π΅ π
= 1 π΅
ππ
ππ‘ + π π 1 π΅Ξ€
ππ‘ π
= 1 π΅
ππ
ππ
ππ
ππ‘ + π π 1 π΅Ξ€
ππ
ππ
ππ‘ π
= ππΆπ π΅
ππ
ππ‘ + ππΆπ π΅
ππ
ππ‘ π
= π(πΆπ+πΆπ) π΅
ππ
ππ‘ π
= ππΆπ‘ π΅
ππ
ππ‘ π
= πππΆπ‘,π π΅π
πππ‘+Ξπ‘ β πππ‘
Ξπ‘ = πππΆπ‘,π
π΅πΞπ‘ πππ‘+Ξπ‘ β πππ‘ = πΆπ,π πππ‘+Ξπ‘ β πππ‘
πΆπ = 1 π
ππ ππ πΆπ = 1
π ππ
ππ = 1
ππππ π‘πππ‘ π΅Ξ€
π ππππ π‘πππ‘ π΅Ξ€
ππ = π΅π Ξ€1 π΅ ππ
Chain rule
SNU ERE Hoonyoung Jeong
Explicit and Implicit Methods
β’ π
π+ Ξ€1 2π
π+1β π
π+ π
πβ Ξ€1 2π
πβ1β π
π+
πππ΄Ξπ₯π
= πΆ
π,ππ
ππ‘+Ξπ‘β π
ππ‘β’ π
1π‘, β― , π
ππ‘are given
we know pressure at current time(t) at all grid blocks.
SNU ERE Hoonyoung Jeong
Explicit Method
β’ Explicit : π
π+1π‘, π
ππ‘, P
iβ1t, Only π
ππ‘+Ξπ‘is unknown
β’ π
π+ Ξ€1 2π
π+1π‘β π
ππ‘+ π
πβ Ξ€1 2π
πβ1π‘β π
ππ‘+
πππ΄Ξπ₯π
= πΆ
π,ππ
ππ‘+Ξπ‘β π
ππ‘β’ Very Easy to solve!
β John Von Neumann stability analysis for homogeneous rock
βΞπ‘ β€
12
πππΆπ‘
π
Ξπ₯
2β Conditionally Stable
SNU ERE Hoonyoung Jeong
Implicit Method
β’ Implicit : π
π+1π‘+Ξπ‘, π
ππ‘+Ξπ‘, P
iβ1t+Ξπ‘β Should solve inversion of a matrix
β but theoretically stable,
β but unstable for too large Ξπ‘, Ξπ₯,
β but much more stable than explicit
β’ π
π+ Ξ€1 2π
π+1π‘+Ξπ‘β π
ππ‘+Ξπ‘+ π
πβ Ξ€1 2π
πβ1π‘+Ξπ‘β π
ππ‘+Ξπ‘+
πππ΄Ξπ₯π
= πΆ
π,ππ
ππ‘+Ξπ‘β π
ππ‘SNU ERE Hoonyoung Jeong
Formulation of Implicit Method
Implicit
ππ+ Ξ€1 2 ππ+1π‘+Ξπ‘ β πππ‘+Ξπ‘ + ππβ Ξ€1 2 ππβ1π‘+Ξπ‘ β πππ‘+Ξπ‘ + ππ π΄Ξπ₯π
= πΆπ,π πππ‘+Ξπ‘ β πππ‘
ππππβ1π‘+Ξπ‘ + πππππ‘+Ξπ‘ + ππππ+1π‘+Ξπ‘ = ππ , π = 1,2, β¦ , π
ππβ1/2ππβ1π‘+Ξπ‘ + βππ+ Ξ€1 2 β ππβ1/2 β πΆπ,π πππ‘+Ξπ‘ + ππ+1/2ππ+1π‘+Ξπ‘
= βπΆπ,ππππ‘ β ππΞ€π΄Ξπ₯ ππ+1/2 = 1
Ξπ₯2
1 ππ΅Ξ€ π+1 + 1/ ππ΅ π
1 πΞ€ π+1 + 1/ππ , ππ α ππππππ‘πππ βΆ + πππππ’ππ‘πππ βΆ β πΆπ,π = πππΆπ‘,π
π΅πΞt , πΆπ‘,π = πΆπ + πΆπ
(# of grid blocks)
ππ ππ ππ
ππ
SNU ERE Hoonyoung Jeong
Simultaneous Linear Equations
β’ Assume we know π
ππ‘, calculate π
ππ‘+Ξπ‘π = 1,2,3,4,5
π = 1, π1π0 + π1π1 + π1π2 = π1 π = 2, π2π1 + π2π2 + π2π3 = π2 π = 3, π3π2 + π3π3 + π3π4 = π3 π = 4, π4π3 + π4π4 + π4π5 = π4 π = 5, π5π4 + π5π5 + π5π6 = π5
π1 π1 0 0 0 π2 π2 π2 0 0 0 π3 π3 π3 0 0 0 π4 π4 π4 0 0 0 π5 π5
π1 π2 π3 π4 π5
= π1 π2 π3 π4 π5
π΄ π₯ π
π₯ = π΄β1π