• Tidak ada hasil yang ditemukan

Topics in Reservoir Engineering (8).pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "Topics in Reservoir Engineering (8).pdf"

Copied!
10
0
0

Teks penuh

(1)

Numerical Solution of

1D Single Phase Flow Equation

[ ]

Hoonyoung Jeong

Department of Energy Resources Engineering Seoul National University

[email protected]

SNU ERE Hoonyoung Jeong

(2)

Flow Equation

β€’

πœ•

πœ•π‘₯

π‘˜ πœ‡π΅

πœ•π‘ƒ

πœ•π‘₯

+

𝑄

π΄πœ•π‘₯

=

πœ•

πœ•π‘‘

πœ™ 𝐡

β€’ We can’t move π‘˜, πœ‡, 𝐡, πœ™ out of πœ• πœ•π‘₯ Ξ€ and πœ• πœ•π‘‘ Ξ€ Because π‘˜, πœ‡, 𝐡, πœ™ depends on π‘₯ and 𝑑 .

βœ“πœ™, 𝐡 : functions of 𝑃, 𝑃 π‘₯, 𝑑

βœ“ Heterogeneous : k π‘₯

βœ“πœ‡, 𝐡 : functions of 𝑃 π‘₯, 𝑑

β†’

π‘˜

πœ‡B

is dependent of π‘₯ β†’ f π‘₯

β€’ Here, we assume a fluid viscosity is constant

[email protected]

SNU ERE Hoonyoung Jeong

(3)

How to Numerically Approximate Derivatives?

πœ•

πœ•π‘₯

π‘˜ πœ‡π΅

πœ•π‘ƒ

πœ•π‘₯ + 𝑄

π΄πœ•π‘₯ = πœ•

πœ•π‘‘

πœ™ 𝐡

[email protected]

SNU ERE Hoonyoung Jeong

(4)

Approximation of Spatial Term

πœ•

πœ•π‘₯ 𝑓 π‘₯ πœ•π‘ƒ

πœ•π‘₯

𝑖

= 𝑓

𝑖+ Ξ€1 2

Ξ”π‘₯

2

𝑃

𝑖+1

βˆ’ 𝑃

𝑖

+ 𝑓

π‘–βˆ’ Ξ€1 2

Ξ”π‘₯

2

𝑃

π‘–βˆ’1

βˆ’ 𝑃

𝑖

= 1 Ξ”π‘₯

2

π‘˜

πœ‡π΅

𝑖+1/2

𝑃

𝑖+1

βˆ’ 𝑃

𝑖

+ 1 Ξ”π‘₯

2

π‘˜

πœ‡π΅

π‘–βˆ’1/2

𝑃

π‘–βˆ’1

βˆ’ 𝑃

𝑖

= 1 Ξ”π‘₯

2

1 πœ‡π΅ Ξ€

𝑖+1

+ 1/ πœ‡π΅

𝑖

1 π‘˜ Ξ€

𝑖+1

+ Ξ€ 1 π‘˜

𝑖

𝑃

𝑖+1

βˆ’ 𝑃

𝑖

+ 1 Ξ”π‘₯

2

1 πœ‡π΅ Ξ€

π‘–βˆ’1

+ 1/ πœ‡π΅

𝑖

1 π‘˜ Ξ€

π‘–βˆ’1

+ Ξ€ 1 π‘˜

𝑖

𝑃

π‘–βˆ’1

βˆ’ 𝑃

𝑖

= 𝑇

𝑖+1/2

𝑃

𝑖+1

βˆ’ 𝑃

𝑖

+ 𝑇

π‘–βˆ’1/2

𝑃

π‘–βˆ’1

βˆ’ 𝑃

𝑖

This is called transmissibility 𝑇𝑖+1/2

[email protected]

SNU ERE Hoonyoung Jeong

(5)

Approximation of Temporal Term

πœ•

πœ•π‘‘ πœ™ 𝐡 𝑖

= 1 𝐡

πœ•πœ™

πœ•π‘‘ + πœ™ πœ• 1 𝐡΀

πœ•π‘‘ 𝑖

= 1 𝐡

πœ•πœ™

πœ•π‘ƒ

πœ•π‘ƒ

πœ•π‘‘ + πœ™ πœ• 1 𝐡΀

πœ•π‘ƒ

πœ•π‘ƒ

πœ•π‘‘ 𝑖

= πœ™πΆπ‘Ÿ 𝐡

πœ•π‘ƒ

πœ•π‘‘ + πœ™πΆπ‘“ 𝐡

πœ•π‘ƒ

πœ•π‘‘ 𝑖

= πœ™(πΆπ‘Ÿ+𝐢𝑓) 𝐡

πœ•π‘ƒ

πœ•π‘‘ 𝑖

= πœ™πΆπ‘‘ 𝐡

πœ•π‘ƒ

πœ•π‘‘ 𝑖

= πœ™π‘–πΆπ‘‘,𝑖 𝐡𝑖

𝑃𝑖𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑

Δ𝑑 = πœ™π‘–πΆπ‘‘,𝑖

𝐡𝑖Δ𝑑 𝑃𝑖𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑 = 𝐢𝑝,𝑖 𝑃𝑖𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑

πΆπ‘Ÿ = 1 πœ™

π‘‘πœ™ 𝑑𝑃 𝐢𝑓 = 1

𝜌 π‘‘πœŒ

𝑑𝑃 = 1

π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝐡΀

𝑑 π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝐡΀

𝑑𝑃 = 𝐡𝑑 Ξ€1 𝐡 𝑑𝑃

Chain rule

[email protected]

SNU ERE Hoonyoung Jeong

(6)

Explicit and Implicit Methods

β€’ 𝑇

𝑖+ Ξ€1 2

𝑃

𝑖+1

βˆ’ 𝑃

𝑖

+ 𝑇

π‘–βˆ’ Ξ€1 2

𝑃

π‘–βˆ’1

βˆ’ 𝑃

𝑖

+

𝑄𝑖

𝐴Δπ‘₯𝑖

= 𝐢

𝑝,𝑖

𝑃

𝑖𝑑+Δ𝑑

βˆ’ 𝑃

𝑖𝑑

β€’ 𝑃

1𝑑

, β‹― , 𝑃

𝑁𝑑

are given

we know pressure at current time(t) at all grid blocks.

[email protected]

SNU ERE Hoonyoung Jeong

(7)

Explicit Method

β€’ Explicit : 𝑃

𝑖+1𝑑

, 𝑃

𝑖𝑑

, P

iβˆ’1t

, Only 𝑃

𝑖𝑑+Δ𝑑

is unknown

β€’ 𝑇

𝑖+ Ξ€1 2

𝑃

𝑖+1𝑑

βˆ’ 𝑃

𝑖𝑑

+ 𝑇

π‘–βˆ’ Ξ€1 2

𝑃

π‘–βˆ’1𝑑

βˆ’ 𝑃

𝑖𝑑

+

𝑄𝑖

𝐴Δπ‘₯𝑖

= 𝐢

𝑝,𝑖

𝑃

𝑖𝑑+Δ𝑑

βˆ’ 𝑃

𝑖𝑑

β€’ Very Easy to solve!

βœ“ John Von Neumann stability analysis for homogeneous rock

βœ“Ξ”π‘‘ ≀

1

2

πœ™πœ‡πΆπ‘‘

π‘˜

Ξ”π‘₯

2

βœ“ Conditionally Stable

[email protected]

SNU ERE Hoonyoung Jeong

(8)

Implicit Method

β€’ Implicit : 𝑃

𝑖+1𝑑+Δ𝑑

, 𝑃

𝑖𝑑+Δ𝑑

, P

iβˆ’1t+Δ𝑑

βœ“ Should solve inversion of a matrix

βœ“ but theoretically stable,

βœ“ but unstable for too large Δ𝑑, Ξ”π‘₯,

βœ“ but much more stable than explicit

β€’ 𝑇

𝑖+ Ξ€1 2

𝑃

𝑖+1𝑑+Δ𝑑

βˆ’ 𝑃

𝑖𝑑+Δ𝑑

+ 𝑇

π‘–βˆ’ Ξ€1 2

𝑃

π‘–βˆ’1𝑑+Δ𝑑

βˆ’ 𝑃

𝑖𝑑+Δ𝑑

+

𝑄𝑖

𝐴Δπ‘₯𝑖

= 𝐢

𝑝,𝑖

𝑃

𝑖𝑑+Δ𝑑

βˆ’ 𝑃

𝑖𝑑

[email protected]

SNU ERE Hoonyoung Jeong

(9)

Formulation of Implicit Method

Implicit

𝑇𝑖+ Ξ€1 2 𝑃𝑖+1𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑+Δ𝑑 + π‘‡π‘–βˆ’ Ξ€1 2 π‘ƒπ‘–βˆ’1𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑+Δ𝑑 + 𝑄𝑖 𝐴Δπ‘₯𝑖

= 𝐢𝑝,𝑖 𝑃𝑖𝑑+Δ𝑑 βˆ’ 𝑃𝑖𝑑

π‘Žπ‘–π‘ƒπ‘–βˆ’1𝑑+Δ𝑑 + 𝑏𝑖𝑃𝑖𝑑+Δ𝑑 + 𝑐𝑖𝑃𝑖+1𝑑+Δ𝑑 = 𝑑𝑖 , 𝑖 = 1,2, … , 𝑁

π‘‡π‘–βˆ’1/2π‘ƒπ‘–βˆ’1𝑑+Δ𝑑 + βˆ’π‘‡π‘–+ Ξ€1 2 βˆ’ π‘‡π‘–βˆ’1/2 βˆ’ 𝐢𝑝,𝑖 𝑃𝑖𝑑+Δ𝑑 + 𝑇𝑖+1/2𝑃𝑖+1𝑑+Δ𝑑

= βˆ’πΆπ‘,𝑖𝑃𝑖𝑑 βˆ’ 𝑄𝑖΀𝐴Δπ‘₯ 𝑇𝑖+1/2 = 1

Ξ”π‘₯2

1 πœ‡π΅Ξ€ 𝑖+1 + 1/ πœ‡π΅ 𝑖

1 π‘˜Ξ€ 𝑖+1 + 1/π‘˜π‘– , 𝑄𝑖 α‰Š π‘–π‘›π‘—π‘’π‘π‘‘π‘–π‘œπ‘› ∢ + π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘–π‘œπ‘› ∢ βˆ’ 𝐢𝑝,𝑖 = πœ™π‘–πΆπ‘‘,𝑖

𝐡𝑖Δt , 𝐢𝑑,𝑖 = πΆπ‘Ÿ + 𝐢𝑓

(# of grid blocks)

π‘Žπ‘– 𝑏𝑖 𝑐𝑖

𝑑𝑖

[email protected]

SNU ERE Hoonyoung Jeong

(10)

Simultaneous Linear Equations

β€’ Assume we know 𝑃

𝑖𝑑

, calculate 𝑃

𝑖𝑑+Δ𝑑

𝑖 = 1,2,3,4,5

𝑖 = 1, π‘Ž1𝑃0 + 𝑏1𝑃1 + 𝑐1𝑃2 = 𝑑1 𝑖 = 2, π‘Ž2𝑃1 + 𝑏2𝑃2 + 𝑐2𝑃3 = 𝑑2 𝑖 = 3, π‘Ž3𝑃2 + 𝑏3𝑃3 + 𝑐3𝑃4 = 𝑑3 𝑖 = 4, π‘Ž4𝑃3 + 𝑏4𝑃4 + 𝑐4𝑃5 = 𝑑4 𝑖 = 5, π‘Ž5𝑃4 + 𝑏5𝑃5 + 𝑐5𝑃6 = 𝑑5

𝑏1 𝑐1 0 0 0 π‘Ž2 𝑏2 𝑐2 0 0 0 π‘Ž3 𝑏3 𝑐3 0 0 0 π‘Ž4 𝑏4 𝑐4 0 0 0 π‘Ž5 𝑏5

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

= 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

𝐴 π‘₯ 𝑑

π‘₯ = π΄βˆ’1𝑑

[email protected]

SNU ERE Hoonyoung Jeong

Referensi

Dokumen terkait