• Tidak ada hasil yang ditemukan

Topics in Reservoir Engineering (7).pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "Topics in Reservoir Engineering (7).pdf"

Copied!
10
0
0

Teks penuh

(1)

Numerical Solution of PDE

[ ]

Hoonyoung Jeong

Department of Energy Resources Engineering Seoul National University

[email protected]

SNU ERE Hoonyoung Jeong

(2)

Why Numerical Solution?

Heterogeneous rock

Porosity and permeability are a function of a location

Multiphase fluid

Liquid, gas

Multi-components

Immiscibility

Fluid properties change over pressure

Pressure changes over location and time

Fluid properties change over location and time

Complicated boundary conditions

Variable well operating conditions

Irregular reservoir shape

Faults

[email protected]

SNU ERE Hoonyoung Jeong

(3)

Flow Equation

𝜕

𝜕𝑥

𝑘 𝜇𝐵

𝜕𝑃

𝜕𝑥 + 𝑄

𝐴𝜕𝑥 = 𝜕

𝜕𝑡

𝜙 𝐵

• We can’t move 𝑘, 𝜇, 𝐵, 𝜙 out of 𝜕 𝜕𝑥Τ and 𝜕 𝜕𝑡Τ Because 𝑘, 𝜇, 𝐵, 𝜙 depends on 𝑥 and 𝑡.

✓𝜙, 𝐵 : functions of 𝑃, 𝑃 𝑥, 𝑡

Heterogeneous : k 𝑥

✓𝜇, 𝐵 : functions of 𝑃 𝑥, 𝑡

𝑘

𝜇B is dependent of 𝑥 → f 𝑥

• Here, we assume a fluid viscosity is constant

[email protected]

SNU ERE Hoonyoung Jeong

(4)

How to Numerically Approximate Derivatives?

𝜕

𝜕𝑥

𝑘 𝜇𝐵

𝜕𝑃

𝜕𝑥 + 𝑄

𝐴𝜕𝑥 = 𝜕

𝜕𝑡

𝜙 𝐵

[email protected]

SNU ERE Hoonyoung Jeong

(5)

Taylor Series

• Univariate function

✓𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

You can approximate the function values near 𝑥 if you know 𝑓 𝑥 and the derivatives

• Multivariate function

✓𝑓 𝐱 + ∆𝐱 = 𝑓 𝐱 + ∇𝑓(𝐱)𝑇∆𝐱 + 1

2 ∆𝐱𝑇𝐇 𝐱 ∆𝐱 + ⋯

[email protected]

SNU ERE Hoonyoung Jeong

(6)

Forward Approximation of 1

st

Derivative

• 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• If ∆𝑥 is small, ∆𝑥2 is very small. So, ignore 𝑓′′2!𝑥 ∆𝑥2 + ⋯

• 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓 𝑥 ∆𝑥

• 𝑓 𝑥 = 𝑓 𝑥+∆𝑥 −𝑓 𝑥

∆𝑥 + 𝑂(∆𝑥)

[email protected]

SNU ERE Hoonyoung Jeong

(7)

Backward Approximation of 1

st

Derivative

• 𝑓 𝑥 − ∆𝑥 = 𝑓 𝑥 − 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• −𝑓 𝑥 ∆𝑥 = 𝑓 𝑥 − ∆𝑥 − 𝑓 𝑥 − 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• 𝑓 𝑥 = 𝑓 𝑥−∆𝑥 −𝑓 𝑥

−∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥 + ⋯

• 𝑓 𝑥 = 𝑓 𝑥−∆𝑥 −𝑓 𝑥

−∆𝑥 + 𝑂(∆𝑥)

[email protected]

SNU ERE Hoonyoung Jeong

(8)

Central Approximation of 1

st

Derivative

• 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• 𝑓 𝑥 − ∆𝑥 = 𝑓 𝑥 − 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• 𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥 − ∆𝑥 = 2𝑓 𝑥 ∆𝑥 + 𝑂 ∆𝑥3

• 𝑓 𝑥 = 𝑓 𝑥+∆𝑥 −𝑓 𝑥−∆𝑥

2∆𝑥 + 𝑂 ∆𝑥2

[email protected]

SNU ERE Hoonyoung Jeong

(9)

Approximation of 2

nd

Derivative

• 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• 𝑓 𝑥 − ∆𝑥 = 𝑓 𝑥 − 𝑓 𝑥 ∆𝑥 + 𝑓′′ 𝑥

2! ∆𝑥2 + ⋯

• 𝑓 𝑥 + ∆𝑥 + 𝑓 𝑥 − ∆𝑥 = 2𝑓(𝑥) + 𝑓′′ 𝑥 ∆𝑥2 + 𝑂 ∆𝑥4

• 𝑓′ 𝑥 = 𝑓 𝑥+∆𝑥 −2𝑓(𝑥)+𝑓 𝑥−∆𝑥

∆𝑥2 + 𝑂 ∆𝑥2

• 𝑓′ 𝑥 =

𝑓 𝑥+∆𝑥 −𝑓(𝑥)

∆𝑥 𝑓 𝑥 −𝑓(𝑥−∆𝑥)

∆𝑥

∆𝑥 + 𝑂 ∆𝑥2

[email protected]

SNU ERE Hoonyoung Jeong

(10)

Smaller ∆𝑥 is Better?

• No

• Smaller ∆𝑥 makes 𝜕𝑓/𝜕𝑥 more accurate, but if ∆𝑥 is too small, 𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥 may be zero

• How to decide ∆𝑥?

Not too large, not too small

1%, 0.1%, 0.01%, … of 𝑥

Depends on your problem

Central approximation is less sensitive to a perturbation size (∆𝑥) than forward and backward approximations

[email protected]

SNU ERE Hoonyoung Jeong

Referensi

Dokumen terkait