• Tidak ada hasil yang ditemukan

Volumes of geodesic balls in Heisenberg group 

N/A
N/A
Protected

Academic year: 2023

Membagikan "Volumes of geodesic balls in Heisenberg group "

Copied!
52
0
0

Teks penuh

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

理 學 博 士 學 位 論 文

2n+1차원 하이젠버그군에서 측지구의 부피

Volumes of geodesic balls in Heisenberg group 

  

蔚山大學校 大學院 數學科

金 惠 娟

[UCI]I804:48009-200000286123 [UCI]I804:48009-200000286123

(3)

Volumes of geodesic balls in Heisenberg group    

指導敎授 朴 健

이 論文을 理學博士學位 論文으로 提出함

2020年 2月

蔚山大學校 大學院 數學科

金 惠 娟

(4)

金惠娟의 理學博士學位 論文을 認准함

審査委員 강 태 호 (印) 審査委員 신 준 국 (印) 審査委員 추 상 목 (印) 審査委員 심 인 보 (印) 審査委員 박 건 (印)

蔚 山 大 學 校 大 學 院

2020年 2月

(5)

(ABSTRACT)

The geodesic and volume of a geodesic ball are well understood in simply connected abelian Lie groups having a left invariant metric, . A non-abelian Lie group which is most closely related to the abelian group  is known as a Heisenberg Group. Thus, understanding the geometric properties of a Heisenberg Group is essential in studies of differential geometry, and the calculation of the volume of a geodesic ball in a Heisenberg group with a left invariant metric has geometric significance.

Studies into calculating the volume of geodesic balls for 3D and 5D Heisenberg groups have been conducted, and have established the volume of a geodesic ball in the 2n + 1D Heisenberg group.

Chapter 2 provides an introduction to a 2-step nilpotent Lie group, which belongs to the Heisenberg group, as well as a general description of the Jacobi field necessary to calculate the volume of a geodesic ball.

Section 1 of Chapter 3 describes the results required to prove the main theorem of this study. Section 2 of Chapter 3 presents the proof of an equation for the volume of a geodesic ball in the 2n+1 D Heisenberg group. Section 3, as a special case of the equation for the volume of a geodesic ball in the 2n+1 D Heisenberg group where n =2, presents the equation of the volume of a geodesic ball of the 5D Heisenberg group, consistent with the results of previous studies.

(6)

< CONTENTS >

1. Introduction and main results ···1

2. Preliminaries ···3

3. Proof of Main Results ···7

3.1 Some Preliminary Lemmas ···7

3.2 Proof of Main Theorem ···13

3.3 Proof of Corollary ···44

References ···45

(7)

Chapter 1

Introduction and main results

LetN be a 2-step nilpotent Lie algebra with an inner product<, >and N be its unique simply connected 2-step nilpotent Lie group with the left invariant metric induced by<, >onN. LetZ be the center ofN. ThenN is represented by the direct sum ofZand its orthogonal complement Z.

For each Z ∈ Z, a skew symmetric linear transformation j(Z) : Z → Z is defined by j(Z)X= (adX)Z forX ∈ Z. Or, equivalently,

< j(Z)X, Y >=<[X, Y], Z >

for all X, Y ∈ Z.

A 2-step nilpotent Lie algebra N is said to be an algebra of Heisenberg type if j(Z)2=−|Z|2id

for all Z ∈ Z. And a Lie group N is said to be a group of Heisenberg type if its Lie algebra N is an algebra of Heisenberg type. The Heisenberg groups are examples of Heisenberg type.

That is, letn≥1be any integer and{X1,· · · , Xn, Y1,· · · , Yn}a basis of R2n=V.LetZ be an one dimensional vector space spanned by {Z}.Define

[Xi, Yi] =[Yi, Xi] =Z

for any i= 1,2,· · · , n that all other brackets are zero. Give on N =V ⊕ Z the inner product such that the set of vectors {Xi, Yi, Z|i= 1,2,· · · , n} forms an orthonormal basis. Let N be the simply connected 2-step nilpotent group of Heisenberg type which is determined by N and equipped with a left-invariant metric induced by the inner product in N. The groupN is called the (2n+ 1)-dimensional Heisenberg group and denoted by H2n+1. In this thesis, we calculate the volumes of the geodesic balls in the Heisenberg group H2n+1:

(8)

Main Theorem. Let Be(R) be the geodesic ball with center e (the identity of H2n+1) and radius R inH2n+1.Then the following holds.

V ol(Be(R))

= 2n+1πA (2n+ 2)!n

(

u0R+vn,2n+1R2n+1+

n1

k=0

(pk(R) sin2n2k1(R

2) cos(R 2) +qk(R) sin2n2k(R

2) +rk(R)

R

2

0

sin2n2k1tcost

t dt)

)

(1.0.1)

where A,u0 andvn,2n+1are constants,pk(R)is a polynomial with2k+ 2≤deg(pk(R)−pk(0)) 2n, qk(R) is a polynomial with 2k+ 1≤deg(qk(R)) 2n+ 1 and rk(R) is a polynomial with 2k+ 2≤deg(rk(R))2n+ 2for0≤k≤n−1.

In special case, we obtained the volumes of geodesic balls in the Heisenberg group forn= 2.

Corollary ([?]). Let Be(R) be the geodesic ball with center e(the identity of H5) and radius R inH5.Then the following holds.

V ol(Be(R))

=4π2 6!

(

576R+ (240108R22R4) sinR+ (30 + 54R2+ 4R4) sin 2R + (528R−116R32R5) cosR+ (132R+ 116R3+ 8R5) cos 2R + (720R2120R42R6)

R

0

sint

t dt+ (360R2+ 240R4+ 16R6)

2R

0

sint t dt

) .

(9)

Chapter 2

Preliminaries

LetN be a 2-step nilpotent Lie algebra with an inner product<, >and N be its unique simply connected 2-step nilpotent Lie group with the left invariant metric induced by <, >on N.The center ofN is denoted byZ.ThenN can be expressed as the direct sum ofZ and its orthogonal complement Z.

Recall that for Z ∈ Z, a skew symmetric linear transformation j(Z) :Z → Z is defined by j(Z)X= (adX)Z forX ∈ Z. Or, equivalently,

⟨j(Z)X, Y⟩=[X, Y], Z⟩

forX, Y ∈ Z. A 2-step nilpotent Lie group N is said to bea group of Heisenberg typeif j(Z)2=−|Z|2id

for all Z ∈ Z.

Let γ(t) be a curve in N such that γ(0) = e (identity element in N) and γ(0) = X0 +Z0 where X0 ∈ Z and Z0 ∈ Z. Since exp :N → N is a diffeomorphism ([?]), the curve γ(t) can be expressed uniquely by γ(t) = exp [X(t) +Z(t)] with

X(t)∈ Z, X(0) =X0, X(0) = 0 Z(t)∈ Z, Z(0) =Z0, Z(0) = 0.

A. Kaplan ([?],[?]) shows that the curve γ(t)is a geodesic in N if and only if X′′(t) =j(Z0)X(t),

Z(t) +12[X(t), X(t)]≡Z0. The following lemma is useful in the later.

Lemma 2.0.1 ([?]). Let N be a simply connected 2-step nilpotent Lie group with a left invariant metric, and let γ(t) be a geodesic ofN with γ(0) =e and γ(0) =X0+Z0 where X0∈ Z and Z0 ∈ Z.Then one has

γ(t) =dlγ(t)(X(t) +Z0), t∈R where X(t) =etj(Z0)X0 and lγ(t) is the left translation by γ(t).

(10)

Throughout this thesis, different tangent spaces will be identified withN via a left transla- tion. So, in the above lemma, we can considerγ(t) as

γ(t) =X(t) +Z0 =etj(Z0)X0+Z0.

Let H2n+1 be the (2n+ 1)-dimensional Heisenberg group with a left invariant metric and H be its Lie algebra. Let γ(t) be a unit speed geodesic on H2n+1 with γ(0) = e(the identity element of H2n+1) and γ(0) =X0+Z0 whereX0 ∈ Z and Z0 ∈ Z.Assume thatX0 ̸= 0and Z0 ̸= 0.Since

{X0+Z0,|Z0|

|X0|X0−|X0|

|Z0|Z0, 1

|Z0||X0|j(Z0)X0} is an orthonormal set in H,we can obtain an orthonormal basis B ={X0+Z0,||XZ0|

0|X0 ||XZ00||Z0,|Z 1

0||X0|j(Z0)X0, Yk, |Z1

0|j(Z0)Yk|Yk ∈ Z, k = 1,2,· · ·, n−1} by adding {Yk,|Z1

0|j(Z0)Yk|Yk ∈ Z, k = 1,2,· · ·, n−1} to

{X0+Z0,|Z0|

|X0|X0 |X0|

|Z0|Z0, 1

|Z0||X0|j(Z0)X0}.

Let

e1(t) = |Z0|

|X0|X(t)−|X0|

|Z0|Z0, e2(t) = 1

|Z0||X0|j(Z0)X(t) and let

e2k1(t) =etj(Z0)Yk, e2k(t) = 1

|Z0|etj(Z0)j(Z0)Yk for each k= 2,3,· · · , n.

Then(t), e2k1(t), e2k(t)|k= 1,2,· · · , n}is an orthonormal frame alongγ(t)onH2n+1(see[?]).

Proposition 2.0.2 ([?]). For each k = 1,2,· · ·, n, let J2k1(t) and J2k(t) be the Jacobi fields with J2k1(0) =J2k(0) = 0, J2k 1(0) =e2k1(0) and J2k (0) =e2k(0).Then we have

(1) for k= 1 [

J1(t) J2(t) ]

=B1(t) [

e1(t) e2(t) ]

where

B1(t) = 1

|Z0|3

[sin(|Z0|t)(1− |Z0|2)|Z0|t |Z0|(cos(|Z0|t)1)

|Z0|(1cos(|Z0|t)) |Z0|2sin(|Z0|t) ]

, (2) for k= 2,3,· · ·, n [

J2k−1(t) J2k(t)

]

=Bk(t) [

e2k−1(t) e2k(t)

]

where

Bk(t) =

[ 1

|Z0|sin(|Z0|t) |Z0|(cos(|Z0|t)1)

|Z10|3(1cos(|Z0|t)) |Z1

0|sin(|Z0|t) ]

.

(11)

Corollary 2.0.3 ([?],[?]). Let H2n+1 be the (2n+ 1)-dimensional Heisenberg group and N be its Lie algebra. Let γ(t) be a unit speed geodesic onN with γ(0) =e(the identity element of N) and γ(0) =X0+Z0 where X0 ∈ Z andZ0∈ Z.

(1) If Z0 ̸= 0, then all the conjugate points along γ are att∈ |Z2π0|ZA where

Z=12, . . .}

and

A={t∈R− {0}|(1− |Z0|2)|Z0|t

2 = tan|Z0|t 2 }. In particular, |2πZ

0| is the first conjugate point of e alongγ.

(2) If Z0 = 0, then there are no conjugate points along γ.

For the conjugate points of another type of Heisenberg groups, Quaternionic Heisenberg groups H4n+3, see [?].

G.Walschap([?]) showed that the first conjugate loci and the cut loci are equal in the case of the groups of Heisenberg type or the 2-step nilpotent groups with one-dimensional center. So, we consider the geodesic balls Be(R) with the radius R 2π. In this thesis we calculate the volumes of geodesic balls inH2n+1.

In ([?]), C.Jang, J. Park and K. Park obtained the formula of the volumes of geodesic balls in the Heisenberg groupH3 as the form of power series.

Theorem 2.0.4 ([?]). Let Be(R) be the geodesic ball with center e and radius R in H3. Then the following holds.

V ol(Be(R)) = 4π (

R3 3 + 2

n=2

(1)n R2n+1

(2n+ 1)!(2n−1)(2n−3) )

.

In ([?]), S. Jeong and K. Park obtained the formula of the volumes of geodesic balls in the Heisenberg group H3.

Theorem 2.0.5([?]). Let0≤R≤2π andBe(R)be the geodesic ball with centere(the identity of H3) and radius R in H3. Then the following holds.

V ol(Be(R))

=π 6

(

16R+ (R2+ 6) sinR+ (R3+ 10R) cosR+ (R4+ 12R2)

R

0

sint t dt

) .

In ([?]), the author obtained the formula of the volumes of the geodesic balls in the Heisenberg group H5.

(12)

Theorem 2.0.6 ([?]). Let Be(R) be the geodesic ball with center e (the identity of H5) and radius R in H5.Then the following holds.

V ol(Be(R))

=4π2 6!

(

576R+ (240108R22R4) sinR+ (30 + 54R2+ 4R4) sin 2R + (528R−116R32R5) cosR+ (132R+ 116R3+ 8R5) cos 2R + (720R2120R42R6)

R

0

sint

t dt+ (360R2+ 240R4+ 16R6)

2R

0

sint t dt

) .

(13)

Chapter 3

Proof of Main Results

3.1 Some Preliminary Lemmas

Note that

det(B1(t)) = 1

|Z0|4{2(1cos(|Z0|t))(1− |Z0|2)|Z0|tsin(|Z0|t)} and

det(Bk(t)) = 2

|Z0|2(1cos(|Z0|t)) for each k= 2,3,· · ·, n.

Lemma 3.1.1 ([?]). For t >0,the following holds.

det (∏n

k=1

Bk(t) )

= 1

|Z0|4{2(1cos(|Z0|t))(1− |Z0|2)|Z0|tsin(|Z0|t)}{ 2

|Z0|2(1cos(|Z0|t))}n10.

Lemma 3.1.2 ([?]). Let n be a natural number and f : [0, x] R has continuous n−th derivatives. Assume that the limt0+ ft(k)n(t)k exists fork= 0,1,· · ·, n−1 and f(n)t(t) is integrable on [0, x].Then tf(t)n+1 is integrable on [0, x]and the following holds.

x

0

f(t)

tn+1dt=

n1

k=0

1

n(n−1)· · ·(n−k) [

f(k)(t) tnk

]x 0+

+ 1 n!

x

0

f(n)(t) t dt

where [

f(k)(t) tnk

]x

0+

= lim

tx

f(k)(t)

tnk lim

t0+

f(k)(t) tnk .

The following lemma is useful in the later.

(14)

Lemma 3.1.3 ([?]). Let n be a natural number and f : [0,1] R has continuous n−th derivatives. (i) f(k)(0) = 0 for k= 0,1,· · ·, n−1 and (ii) f(n)t(t) is integrable on [0,1]. Then

f(t)

tn+1 is integrable on[0,1] and

1

0

f(t)

tn+1dt= 1 n!

(

n1

k=0

(n−k−1)!f(k)(1) +f(n)(0)

n k=1

1 k+

1

0

f(n)(t) t dt

) . Proof. By the L’Hopital’s theorem, we have

lim

t0+

f(t) tn = lim

t0+

f(1)(t) ntn1

= lim

t0+

f(2)(t) n(n−1)tn2 ...

= lim

t0+

f(k)(t)

n(n−1)· · ·(n−k+ 1)tnk ...

=f(n)(0) n! . So, we get

tlim0+

f(k)(t)

tnk =n(n−1)· · ·(n−k+ 1)f(n)(0) n!

fork(0≤k≤n).By Lemma 3.1.2, we have

1

0

f(t) tn+1dt

=

n1

k=0

1

n(n−1)· · ·(n−k) (

lim

t1

f(k)(t) tnk lim

t0+

f(k)(t) tnk

) + 1

n!

1

0

f(n)(t) t dt

=

n1

k=0

1

n(n−1)· · ·(n−k) (

f(k)(1)−n(n−1)· · ·(n−k+ 1)·f(n)(0) n!

) + 1

n!

1

0

f(n)(t) t dt

=

n1

k=0

f(k)(1)

n(n−1)· · ·(n−k)+f(n)(0) n!

n1

k=0

1 n−k + 1

n!

1

0

f(n)(t) t dt

=

n1

k=0

f(k)(1)

n(n−1)· · ·(n−k)+f(n)(0) n!

n k=1

1 k + 1

n!

1

0

f(n)(t) t dt

=

n1

k=0

(n−k−1)!f(k)(1)

n(n−1)· · ·(n−k)(n−k−1)! +f(n)(0) n!

n k=1

1 k + 1

n!

1

0

f(n)(t) t dt

=1 n!

(

n1

k=0

(n−k−1)!f(k)(1) +f(n)(0)

n k=1

1 k+

1

0

f(n)(t) t dt

) . This completes the proof.

(15)

Lemma 3.1.4 ([?]). Area element du on the unit sphere S2n is given by

du= 1

√1(x21+x22+· · ·+x22n)dx1dx2· · ·dx2n

where dudenotes the canonical measure of S2n.

The n-dimension spherical coordinates are well known in Wikipedia the Free Encyclopedia.

Lemma 3.1.5 ([?]). (n-dimension spherical coordinates) Let







































x1 =rcosθ1

x2 =rsinθ1cosθ2

x3 =rsinθ1sinθ2cosθ3 x4 =rsinθ1sinθ2sinθ3cosθ4

...

xn2=rsinθ1sinθ2sinθ3· · ·sinθn3cosθn2

xn1=rsinθ1sinθ2sinθ3· · ·sinθn3sinθn2cosθn1 xn=rsinθ1sinθ2sinθ3· · ·sinθn3sinθn2sinθn1

where r 0, 0≤θi≤π(i= 1,2,· · · , n−2), and 0≤θn1 2π. Then Jacobian determinant

(x1, x2,· · · , xn)

(r, θ1, θ2,· · · , θn1) =rn1sinn2θ1sinn3θ2· · ·sin2θn−3sinθn−2.

Lemma 3.1.6. For 0≤m≤n and a >0, we have d2m

dx2m(sin2n(ax)) =a2m

m k=0

cka(k, m−k) sin2n2k(ax) where ck= (2n(2n)!2k)!,

a(k, l) =





1 , l= 0

(22)l

a1,a2,···,al∈{n,n1,···,nk} a1≥a2≥···≥al

(a1a2· · ·al)2 , l≥1 (3.1.1) Proof. For the convenience of calculation, denotef2n(x) = sin2n(ax) and we use mathematical induction for m. For m=0, we have

a0

0 k=0

cka(k,−k) sin2n2k(ax) = (2n)!

(2n−0)!a(0,0) sin2n(ax) = sin2n(ax).

The proposition is true for m=0. Next assume that for 0≤m < n, f2n(2m)(x) =a2m

m k=0

cka(k, m−k) sin2n2k(ax).

(16)

Differentiating both sides the equation with respect tox, we get f2n(2m+1)(x) =a2m+1

m k=0

(2n−2k)cka(k, m−k) sin2n2k1(ax) cos(ax) and

f2n(2m+2)(x) =a2m+2

m k=0

(2n−2k)(2n−2k−1)cka(k, m−k) sin2n2k2(ax)

−a2m+2

m k=0

(2n−2k)2cka(k, m−k) sin2n2k(ax).

(3.1.2)

Using

a2m+2

m k=0

(2n−2k)(2n−2k−1)cka(k, m−k) sin2n2k2(ax)

=a2m+2

m+1

k=1

(2n−2k+ 2)(2n−2k+ 1)ck1a(k−1, m−k+ 1)f2n2k(x), we rewrite (3.1.2) as

f2n(2m+2)(x) =a2m+2

m+1

k=1

(2n−2k+ 2)(2n−2k+ 1)ck1a(k−1, m−k+ 1)f2n2k(x)

−a2m+2

m k=0

(2n−2k)2cka(k, m−k)f2n2k(x).

(3.1.3)

We consider k= 0,1≤k≤m and k=m+ 1in (3.1.3).

For k= 0,we get

−a2m+2(2n−0)2c0a(0, m−0)f2n0(x) =a2(m+1)c0a(0, m+ 1) sin2n(ax). (3.1.4) In case1≤k≤m, we have

a2m+2

m k=1

(2n−2k+ 2)(2n−2k+ 1)ck1a(k−1, m−k+ 1)f2n2k(x)

−a2m+2

m k=1

(2n−2k)2cka(k, m−k)f2n2k(x)

=a2m+2

m k=1

( (2n)!

(2n−2k)!a(k−1, m−k+ 1)(2n−2k)2 (2n)!

(2n−2k)!a(k, m−k) )

f2n2k(x)

=a2(m+1)

m k=1

ck (

a(k−1, m−k+ 1)(2n−2k)2a(k, m−k) )

sin2n2k(ax).

(3.1.5) Using (3.1.1) in the last equation of (3.1.5), we have

a(k−1, m−k+ 1)

=(22)mk+1

a1,a2,···,amk,amk+1∈{n,n1,···,nk+1} a1a2≥···≥amkamk+1

(a1a2· · ·amkamk+1)2 (3.1.6)

(17)

and

(2n−2k)2a(k, m−k)

=(22)mk+1

a1,a2,···,amk∈{n,n1,···,nk+1,nk} a1a2≥···≥amk

(n−k)2(a1a2· · ·amk)2. (3.1.7)

LetSbe event of (3.1.6). EventSrepresents choice of(m−k+ 1)elementsa1, a2,· · · , amkand amk+1 witha1≥a2 ≥ · · · ≥amk≥amk+1 exceptn−kfrom a collection of (k+ 1)elements n, n−1,· · · , n−k+ 1,andn−k.LetDbe event of (3.1.7). Puttingamk+1=n−k,eventD represents choice of (m−k) elements a1, a2,· · ·, amk witha1 ≥a2 ≥ · · · ≥ amk including at leastamk+1=n−kfrom a collection of(k+ 1)elementsn, n−1,· · · , n−k+ 1,and n−k.We see that the complement of event S is event D. The outcomes of an event and the outcomes of the complement make up the entire sample space. Adding (3.1.6) and (3.1.7) represents choice of (m−k+ 1) elements a1, a2,· · ·, amk, amk+1 witha1 ≥a2 ≥ · · · ≥amk ≥amk+1 from a collection of (k+ 1)elements n, n−1,· · · , n−k+ 1,and n−k.

That is, we have

a(k−1, m−k+ 1)(2n−2k)2a(k, m−k)

=(22)mk+1

a1,a2,···,amk,amk+1∈{n,n1,···,nk+1,nk} a1a2≥···≥amk+1

(a1a2· · ·amkamk+1)2

=a(k, m−k+ 1).

Then we obtain a2m+2

m k=1

ck (

a(k−1, m−k+ 1)(2n−2k)2a(k, m−k) )

sin2n2k(ax)

=a2(m+1)

m k=1

cka(k, m−k+ 1) sin2n2k(ax).

For k=m+ 1,we get

a2m+2(2n−2(m+ 1) + 2)(2n−2(m+ 1) + 1)cma(m,0)f2n−2(m+1)(x)

=a2(m+1)cm+1a(m+ 1,0) sin2n2(m+1)(ax).

(3.1.8) From (3.1.4), (3.1.5) and (3.1.8), we consider (3.1.3) as

f2n(2m+2)(x) =a2(m+1)

m+1

k=0

cka(k, m−k+ 1) sin2n2k(ax).

Therefore, it is true that for 0≤m+ 1< n, d2(m+1)

dx2(m+1)(sin2n(ax)) =a2(m+1)

m+1

k=0

cka(k, m+ 1−k) sin2n2k(ax).

This completes the proof.

(18)

Lemma 3.1.7. Let nbe a natural number. For R>0 the following holds.

Rx

0

(1cost)ndt= 2n+1

( (2n)!

(n!2n)2 ·Rx

2 1

2n+ 1

n1

k=0

δksin2n2k1Rx

2 cosRx 2

)

where

δk = 2n+ 1

2n ·2n−1

2n−2· · ·2n+ 12k 2n−2k =

k l=0

2n+ 12l 2n−2l . Proof. We make the substitutionRx=a, so that

a

0

(1cost)ndt=

a

0

2nsin2n t 2dt

=2n+1

a

2

0

sin2nθdθ.

We calculate∫a2

0 sin2nθdθ as follows. Let∫a2

0 sin2nθdθ=I2n,thenI0 = a2 and I2n= 1

2nsin2n1 a 2cosa

2+ 2n−1 2n I2n2

= 1

2nsin2n1 a 2cosa

2+ 2n−1 2n

(

1

2n−2sin2n3a 2cosa

2 +2n−3 2n−2I2n4

)

= ...

= 1

2nsin2n1 a 2cosa

2+ (

2n−1

2n(2n−2)sin2n3a 2cosa

2 )

+ (

(2n−1)(2n−3)

2n(2n−2)(2n−4)sin2n5a 2cosa

2 )

+· · · +

(

(2n−1)(2n−3)· · ·3

2n(2n−2)(2n−4)· · ·2sin1 a 2cosa

2 )

+ (2n−1)(2n−3)· · ·3 2n(2n−2)(2n−4)· · ·2 ·I0

= 1

2nsin2n1 a 2cosa

2 2n−1

2n(2n−2)sin2n3 a 2cosa

2 (2n−1)(2n−3)

2n(2n−2)(2n−4)sin2n5a 2cosa

2

− · · · − (2n−1)(2n−3)· · ·3

2n(2n−2)(2n−4)· · ·2sin1a 2cosa

2 + (2n)!

(n!2n)2 ·a 2. Therefore,

I2n= (2n)!

(n!2n)2 ·a

2 1

2n+ 1

n1

k=0

δksin2n2k1a 2cosa

2 where

δk = 2n+ 1

2n ·2n−1

2n−2· · ·2n+ 12k 2n−2k =

k l=0

2n+ 12l 2n−2l .

Since we invent the new variablea, we need to convert back to the original variableRx. We get

Rx

0

(1cost)ndt= 2n+1

( (2n)!

(n!2n)2 ·Rx

2 1

2n+ 1

n1

k=0

δksin2n2k1 Rx

2 cosRx 2

) . This completes the proof.

(19)

3.2 Proof of Main Theorem

We introduce the volume formula of geodesic balls in Riemannian manifolds, which is well- known. For example, see [?]. Let M be a Riemannian manifold with a metric g and p M.

Take an orthonormal basis {u1, u2,· · ·, un} of TpM and let (x1, x2,· · · , xn) be the coordinates determined by {u1, u2,· · · , un}. This local coordinate system is called the normal coordinate system at p. It is easy to show that ∂x

im = (dexpp)n

i=1xiui(ui) where m = expp(∑n

i=1xiui).

Then the volume form vg on Up is given by vg =

√ det

( g(

∂xi

,

∂xj

) )

dx1∧dx2∧ · · · ∧dxn

where gij is the metric coefficients of g inUp. Therefore, the volume of the geodesic ballBp(r) is given by

V ol(Bp(r)) =

expp1(Bp(r))

exppvg.

Let γ(t) be the unit speed geodesic in M with γ(0) = p, γ(0) = u1 and let Ji(t) be the Jacobi field with Ji(0) = 0 and Ji(0) =ui for each i= 2,3,· · · , n.Then we get

(dexpp)tu1u1 =γ(t) and

(dexpp)tu1ui = 1 tJi(t) for each i= 2,3,· · ·, n.So, we see that

√ det

( g(

∂xi,

∂xj) )

=t(n1)

det(g(Ji(t), Jj(t))).

Hence, we have

exppvg =t(n1)

det(g(Ji(t), Jj(t)))dx1dx2· · ·dxn=

det(g(Ji(t), Jj(t)))dtdu

wheredudenote the canonical measure of the unit sphereSn1.Therefore, by Fubini’s Theorem, we get

V ol(Bp(r)) =

Sn1

r

0

det(g(Ji(t), Jj(t)))dtdu.

Referensi

Dokumen terkait

Conclusion: Consumption of herbal medicine, use of scrubs and exclusive breastfeeding will increase the development of infants before the age of 12 months in the