ISSN 2790-0886
В Е С Т Н И К
АЛМАТИНСКОГО УНИВЕРСИТЕТА ЭНЕРГЕТИКИ И СВЯЗИ
Учрежден в июне 2008 года
Тематическая направленность: энергетика и энергетическое машиностроение, информационные, телекоммуникационные и космические технологии
1 (60) 2023
Импакт-фактор - 0.095
Научно-технический журнал Выходит 4 раза в год
Алматы
о постановке на переучет периодического печатного издания, информационного агентства и сетевого издания
№ KZ14VPY00024997 выдано
Министерством информации и общественного развития Республики Казахстан
Подписной индекс – 74108 Бас редакторы – главный редактор
Стояк В.В.
к.т.н., профессор
Заместитель главного редактора Жауыт Алгазы, доктор PhD Ответственный секретарь Шуебаева Д.А., магистр
Редакция алқасы – Редакционная коллегия
Главный редактор Стояк В.В., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;
Заместитель главного редактора Жауыт А., доктор PhD, ассоциированный профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;
Сагинтаева С.С., доктор экономических наук, кандидат физико-математических наук, профессор математики, академик МАИН;
Ревалде Г., доктор PhD, член-корреспондент Академии наук, директор Национального Совета науки, Рига, Латвия;
Илиев И.К., доктор технических наук, Русенский университет, Болгария;
Белоев К., доктор технических наук, профессор Русенского университета, Болгария;
Обозов А.Д., доктор технических наук, НАН Кыргызской Республики, заведующий Лабораторией «Возобновляемые источники энергии», Кыргызская Республика;
Кузнецов А.А., доктор технических наук, профессор Омского государственного технического университета, ОмГУПС, Российская Федерация, г. Омск;
Алипбаев К.А., PhD, доцент Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;
Зверева Э.Р., доктор технических наук, профессор Казанского государственного энергетического университета, Российская Федерация, г. Казань;
Лахно В.А., доктор технических наук, профессор Национального университета биоресурсов и природопользования Украины, кафедра компьютерных систем, сетей и кибербезопасности, Украина, Киев;
Омаров Ч.Т., кандидат физико-математических наук, директор Астрофизического института имени В.Г. Фесенкова, Казахстан;
Коньшин С.В., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;
Тынымбаев С.Т., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан.
За достоверность материалов ответственность несут авторы.
При использовании материалов журнала ссылка на «Вестник АУЭС» обязательна.
131
ИНФОРМАЦИОННЫЕ,
ТЕЛЕКОММУНИКАЦИОННЫЕ И КОСМИЧЕСКИЕ ТЕХНОЛОГИИ
МРНТИ 47.45 https://doi.org/10.51775/2790-0886_2023_60_1_131 УДК 621.396
RESEARCH AND DEVELOPMENT OF A PHASED ANTENNA ARRAY POWER DIVIDER
B.A. Kozhakhmetova1*, K.S. Chezhimbayeva1, B.A. Karibayev2, A.I. Samsonenko3
1Non-profit JSC «Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev», Almaty, Kazakhstan
2Al-Farabi Kazakh National University, Almaty, Kazakhstan
3 SLLP «Institute of Space Engineering and Technologies», Almaty, Kazakhstan e-mail: [email protected], [email protected], [email protected],
Abstract. Today, phased antenna arrays are actively used in many modern radio engineering systems. These types of antennas are the most promising antenna systems and have a great advantages in the properties of broadband, multiband and gain, in comparison with other antennas. In this paper, one of the main components of the phased antenna array the power divider is considered. The role of the power divider in the antenna system is very important, since it allows to divide the incoming signal power stream into several outputs. The main purpose of this work is to study the main types of power dividers used in phased antenna arrays, as well as the development of a 1:4 power divider for a 4-element phased antenna array. The developed divider is made according to the ring type of power division. The tracing of the divider circuit was carried out in the printed circuit board design program «Sprint-Layout 6». After the assembly and installation of all the main components of the phased antenna array, measurements of some antenna characteristics, such as the standing wave ratio coefficient and the radiation pattern, were carried out. To obtain more accurate results, measurements were carried out in an anechoic chamber, and also the spectrum analyzer FieldFox Analyzer N9915A was used for measurements. According to the measurement results, it was found that the antenna is sufficiently well matched and has a standing wave ratio coefficient value of less than 1.5. The results of this work are interest for further research and design of phased antenna array sybsystems for educational purposes.
Keywords: power divider, antenna array, SWR, radiation pattern, spectrum analyzer.
Introduction
To date, a special role in the theory and technology of antennas is occupied by antennas of the phased antenna array type (PAA). This antenna system has a great advantage over a single emitter. For example, an antenna array consisting of many radiating elements makes it possible to increase the energy potential of the antenna and form a narrow radiation pattern (RP), which allows it to be used in systems such as radio navigation, radiolocation, satellite communications, mobile communications, and electronic warfare systems [1-2]. Also, the main advantages of the phased antenna array include: electrical scanning of space, broadband, high reliability and noise immunity.
Structurally, the PAA consists an array of a large number radiating elements connected by means of a feeder line with phase shifters. Phase shifters allow to form the necessary phase shift and thereby tilt the beam RP. Phase shifters are one of the main components of PAA [1], [3].
One of the key components of the PAA is also the power divider (adder). Power dividers are passive devices that divide the input signal power into two or more output signals, and adders, respectively, summarize the input signal power throughout the system. Power dividers and adders are mutual devices.
Dividers (adders) of the PAA power system should provide a given amplitude-phase distribution in the output arms, which forms the required RP [4-5].
132
Currently, Wilkinson power dividers are most used in the antenna array power supply system, due to their simplicity, geometric dimensions and low insertion losses [6-10]. The paper [6] presents the development of a modified Wilkinson power divider 1:4, in which curved angles were used to reduce unintended radiation. The operating frequency range of the divider is from 3GHz to 8GHz. The simulation results showed the value of good insertion losses, equal power division and good isolation compared to a traditional power divider. Figure 1 shows the model of this divider in the CST Microwave Studio program.
Figure 1 – Wilkinson power divider 1 to 4 [6].
Works [9-10] describe the development of a 4-port and 16-port Wilkinson power divider in the super high frequency (SHF) range. The simulation results also demonstrate good values of the values of return losses, standing wave ratio (SWR) and isolation.
The development of a 4-port power divider of a slit antenna array was proposed in [11]. The power divider of this antenna uses self-compensating phase shift technology to increase its broadband. In the process of modeling, good results were obtained for the gain and bandwidth, which allows it to be used in 5G mobile communication systems.
A power divider of 1:12 for use in ground-based surveillance radar at C-band frequencies is presented in [12]. The design and modeling of the power divider was carried out using the CST Studio Suite program, as a result of which good results were obtained in matching (SWR less than 1.5) and bandwidth (200 MHz) in the operating frequency range. The 1:12 divider model is shown in Figure 2.
Figure 2 – Power divider 1:12 [12]
Materials and methods of research
Depending on the technical requirements for the devices, there are power dividers made using serial, parallel or ring circuits.
One of the simplest schemes for constructing power dividers of a serial type is a divider on smooth transitions. Figure 3 shows the topology of this divider. The condition for matching such divider is determined by the expression [3]:
𝑌𝑖 = 𝑌𝑖+1+ 𝑌𝑖+2 (1) where Yi – wave conductivities of the corresponding lines.
133
Figure 3 – Topology of a serial power divider
The power distribution depends on the ratio of the wave conductivities of the output transmission lines.
Figure 4 shows the electrical circuit of a parallel-type divider, made in the form of a multipath star.
The input and output arms of this divider have equal wave resistances Z0. The matching is carried out using a quarter-wave segment of the transmission line, the wave resistance of which is defined as [3]:
𝑍1=𝑍0
𝑁 (2) where N - is the number of input arms.
Figure 4 – Electrical diagram of a parallel type power divider
In the ring power dividers shown in Figure 5, input and output matching is achieved by selecting the wave resistances of quarter-wave segments of microstrip lines, which in the case of equal power division have the value Z1=√2 Z0 [3].
a) b)
Figure 5 – Electrical diagram (a) and topology (b) of the ring power divider
The paper [13] presents the development of a switching phase shifter of PAA, which forms 3 antenna beams. Figure 6 shows a generalized block diagram of this antenna. The circuit of each emitter contains 2 switches, which form the necessary phase shift.
134
Figure 6 – Block diagram of the antenna array of 4 radiators
A detailed description of the development of phase shifters is also given in [13]. The purpose of this work is to describe the design of the power divider and measure the main characteristics for this antenna array for educational and scientific purposes.
The ring type was chosen as the circuit for constructing the power divider, because its simplicity and convenience of design, and fiberglass was used for the printed circuit board material. The matching of the input and outputs is achieved using a quarter-wave segment, which in the case of a printed version is reduced due to the dielectric substrate and is determined by the following formula:
𝜆𝑓 =𝜆𝑣𝑎𝑐
√𝜀 (3) where ε — is the dielectric constant of the fiberglass;
λvac — is the wavelength in free space.
The dielectric permittivity of fiberglass is 4.5. Substituting the value into formula (3), the length of the quarter-wave segment on the board is calculated.
𝜆𝑓 = 360
√4,5= 170 mm;
𝜆𝑓 4 =170
4 = 42,5 mm.
Next, the resistance of the RB ballast resistors is calculated. The resistance of the ballast resistor is equal to the sum of the wave resistances of the matching quarter-wave segments, which are equal to 50 Ohms.
𝑅𝐵 = 𝑍1+ 𝑍1= 50 + 50 = 100 Ohm
The tracing of the divider circuit was carried out in the printed circuit board design program «Sprint- Layout 6». This program was chosen due to the simplicity, accessibility and efficiency of wiring and drawing printed circuit boards for electronic devices [14]. Figure 5 shows a ready-made power divider trace.
135
Figure 5 – Tracing of the signal power divider in the program «Sprint-Layout 6»
Further, after printing the board, the connector and ballast resistors are soldered to it, and also mounting posts are installed on the board for connection. Figure 6 shows a ready-made power divider.
Figure 6 – Ready power divider for 4 ports Results and measurements
After assembling and mounting all the main components of the antenna under study, the final form of the antenna takes the form as shown in Figure 7.
136
a) b)
Figure 7 – The front (a) side and (b) back side of the four-element antenna array
As can be seen from Figure 7, the antenna array consists of 4 switching phase shifters, 4 emitters (symmetrical vibrators), a power divider and a phase shifter control unit.
To obtain correct results of measurements of antenna characteristics, the experiment was carried out in an anechoic chamber of the «Institute of Space Engineering and Technology».
A portable combined microwave circuit analyzer FieldFox Analyzer N9915A was used for the measurement. The technical characteristics of this device are presented in Table 1 [15].
Table 1 - Characteristics of Microwave Analyzer N9915A
Frequency range from 30 kHz to 9 GHz
Dynamic range 100 dB
Amplitude measurement error ±0,5 dB
Battery life 3,5 hours
Weight of the device 3,0 kg
Operating temperature range from –10°C to +55°C
One of the main parameters of the antenna is the standing wave coefficient, which shows the degree of antenna matching.
When measuring the SWR of the antenna, all elements are interconnected using phase shifters and a power divider. Each emitter is connected to the phase shifters using a cable, respectively, the first emitter to the first phase shifter, the second to the second phase shifter, and so all 4 emitters and phase shifters are connected to each other. Next, all 4 phase shifters are connected to the power divider. Connecting the common port of the divider with a cable to the circuit analyzer and calibrating in the required frequency range (from 0.5 GHZ to 1.5 GHz) and measure the SWR value.
The SWR measurement of all four elements is shown in Figure 8.
Figure 8 – Measurement of SWR antenna
137
As a result of the measurements shown in Figure 9, the SWR value was 1.117 at a frequency of 861 MHz and 1.129 at a frequency of 832 MHz. The SWR value is within the normal range and does not exceed 1.5, which is a good value of antenna matching.
Figure 9 – Antenna SWR value
In the process of measuring the RP, the antenna under study, which is mounted on a rotary support device with a manual drive, rotates in the azimuthal plane within the angular sector +180, and then - 180
and every 2 the level of received microwave oscillations is measured. By deviating from the forward direction (by switching the phaseshift switches using the control unit) to the left and right by 180, we get the front, side and rear lobes of the RP. Figure 10 shows the antenna RP in three directions.
Figure 10 – Antenna RP in three directions
Results of modeling: the width of the bottom level of the main lobe is 23.8, and the side lobes are 8. The beam deflection to the left and right is 15-16.
Conclusion
Thus, in this paper, the study of the main types of power dividers of phased antenna arrays is carried out. It is noted that most of the power dividers of phased antenna arrays are made according to the Wilkinson type. The development of a 4-port power divider for a 1:4 antenna array is given. This power divider is made according to the ring type, due to the simplicity and convenience of the design. Measurements of antenna characteristics, such as SWR and radiation pattern, have been carried out. In the process of measurements, fairly good results were obtained. The antenna has good matching at frequencies of 861 MHz and 832 MHz.
The results of this work are of interest for further research of the characteristics and principles of operation of phased array antennas, as well as the use of this antenna for scientific and educational purposes.
138
LIST OF REFERENCES
[1] Voskresensky D.I., ed. Ustrojstva SVCh i antenny. Proektirovanie fazirovannyh antennyh reshetok [Microwave devices and antennas. Design of phased antenna arrays]. Moscow, Radio Engineering Publ., 2012, 744 p.
[2] Kozhakhmetova B.A., Kamal R.Zh., Koishybai S.S. Voprosy primenenija aktivnyh fazirovannyh antennyh reshetok v radiotehnicheskih sistemah [Issues of application of active phased antenna arrays in radio engineering systems]. Trudy 2 mezhdunarodnogo nauchno-tehnicheskogo foruma «Sovremennye tehnologii v nauke i obrazovanii - 2019». [Proc. 2nd international scientific and technical forum «Modern Technologies in Science and Education – 2019»] Rjazan', 2019, vol.1, pp.47-50
[3] Samsonenko A.I., Aitmagambetov A.Z., Kozhakhmetova B.A., Kulakayeva A.E., Zhaksylyk A., Razrabotka kommutacionnogo fazovrashhatelja aktivnoj fazirovannoj antennoj reshetki [Development of a switching phase shifter of an active phased array antenna]. Bulletin of KBTU, 2019, vol. 16, issue 3, pp.162- 167.
[4] Deliteli-summatory moshhnosti [Power dividers-adders] Available at: http://autoelektrix.ru/rus- 097/1/ (accessed 22 February 2023)
[5] Tushnov, P. A., Berdyev, V. S. Tehnologija upravlenija vyhodnoj moshhnost'ju priemoperedajushhego modulja AFAR [Technology for controlling the output power of the APAA receiving and transmitting module]. Radio engineering, 2015, vol.10, pp. 62-74
[6] F. A. Shaikh, S. Khan, A. Z. Alam, M. H. Habaebi, O. O. Khalifa and T. A. Khan, "Design and analysis of 1-to-4 Wilkinson power divider for antenna array feeding network," 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 2018, pp. 1-4, doi:
10.1109/ICIRD.2018.8376338
[7]
B.Pratistha and B. Basu. "Design of Dual-Band 1× 2 Antenna Array Using Wide Band Wilkinson Power Divider." Proceedings of the 2nd International Conference on Communication, Devices and Computing: ICCDC 2019. Springer Singapore, 2020.[8] I. Divyankshi, et al. "Effect of Wilkinson Power Divider on Antenna Array." 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE, 2022.
[9] A. A. Rauf, J. Tahir, A. Raza, A. Ali and I. H. Umrani, "16 ways X-band wilkinson power divider for phased array transmitter," 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2018, pp. 835-840, doi: 10.1109/IBCAST.2018.8312321.
[10] E. Kenane, M. Garah and F. Benmeddour, "A Dual Band Four Ports WILKINSON Power Divider Design," 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir - Essaouira, Morocco, 2020, pp. 1-6, doi: 10.1109/CiSt49399.2021.9357289
[11] P. Jing, B. Li, B. Wu, N. Zhang, Y. Xu and X. Lv, "A Millimeterwave SIW Slot Antenna Array for 5G Communication," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 2018, pp. 1-3, doi: 10.1109/ICMMT.2018.8563287.
[12] Rayisiwi, Y. A., & Hariyadi, T. (2018). Design of A 1:12 Power Divider at 5 GHz for Ground Surveillance Radar Application. Materials Science and Engineering, 384(1), p.12053. doi:10.1088/1757- 899X/384/1/012053
[13] Kozhakhmetova B.A., Chezhimbayeva K.S., Samsonenko A.I. Analiz metoda fazovrashhatelja dlja fazirovannoj antennoj reshetki [Analysis of the phase shifter method for a phased array antenna].
Mezhdunarodnaja nauchno-tehnicheskaja konferencija «Energetika, infokommunikacionnye tehnologii i vysshee obrazovanie» [International Scientific and Technical Conference «Power Engineering, Infocommunication Technologies and Higher education»]. Kazan, 2023, vol. 1, pp. 472-481.
[14] Sprint-Layout 6.0. Available at: https://sprint-layout.software.informer.com/ (accessed 22 February 2023)
[15] N9915A FieldFox Handheld Microwave Analyzer. Available at:
https://www.keysight.com/us/en/product/N9915A/fieldfox-a-handheld-microwave-analyzer-9-ghz.html?rd=1 (accessed 22 February 2023)
139
ФАЗАЛЫҚ АНТЕННА ТОРЫНЫҢ ҚУАТ БӨЛГІШІН ЗЕРТТЕУ ЖӘНЕ ӘЗІРЛЕУ
Б.А. Кожахметова1*, К.С. Чежимбаева1, Б.А. Карибаев2, А.И. Самсоненко3
1«Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті» КЕАҚ, Алматы, Қазақстан
2«әл-Фараби атындағы Қазақ ұлттық университеті», Алматы, Қазақстан
3ЕЖШС «Ғарыштық техника және технологиялар институты», Алматы, Қазақстан e-mail: [email protected], [email protected], [email protected],
Андатпа. Қазіргі уақытта фазалық антенна торлары көптеген заманауи радиотехникалық жүйелерде белсенді қолданылады. Антенналардың бұл түрлері ең перспективалы антенна жүйелері болып табылады және басқа антенналармен салыстырғанда кең жолақты, көп ауқымды және күшейту қасиеттерінде үлкен артықшылыққа ие. Бұл жұмыста фазалық антенна торының негізгі бөліктерінің бірі-қуат бөлгіш қарастырылады. Антенна жүйесіндегі қуат бөлгіштің рөлі өте маңызды, өйткені ол кіріс сигналының қуат ағынын бірнеше шығысқа бөлуге мүмкіндік береді. Бұл жұмыстың негізгі мақсаты фазалық антенна торларында қолданылатын қуат бөлгіштердің негізгі түрлерін зерттеу, сондай-ақ 4 элементтік фазалық антенна торы үшін 1-ден 4-ке дейінгі қуат бөлгішті әзірлеу болып табылады. Әзірленген бөлгіш қуатты бөлудің сақиналық түріне сәйкес жасалады. Бөлгіш сұлбасын қадағалау «Sprint-Layout 6» платаларды жобалау бағдарламасында жүргізілді. Фазалық антеннаның барлық негізгі бөлімдерін жинап, орнатқаннан кейін антеннаның кейбір сипаттамаларына өлшеу жүргізілді, мысалы, тұрақты толқын коэффициенті және бағыт диаграммасы. дәлірек нәтижеге қол жеткізу үшін өлшеулер жаңғырық емес камерада жүргізілді, сонымен қатар FieldFox Analyzer N9915A спектр анализаторы қолданылды. Өлшеу нәтижелері бойынша антенна жеткілікті түрде сәйкес келеді және тұрақты толқын коэффициентінің мәні 1,5-тен аз. Бұл жұмыстың нәтижелері фазалық антенна торының бөліктерін одан әрі оқу мақсатында зерттеуге және жобалауға қызығушылық тудырады.
Түйін сөздер:қуат бөлгіш, антенналық тор, ТТК, бағыт диаграммасы, спектр анализаторы.
ИССЛЕДОВАНИЕ И РАЗРАБОТКА ДЕЛИТЕЛЯ МОЩНОСТИ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ
Б.А. Кожахметова1*, К.С. Чежимбаева1, Б.А. Карибаев2, А.И. Самсоненко3
1НАО «Алматинский университет энергетики и связи имени Гумарбека Даукеева», Алматы, Казахстан
2«Казахский национальный университет имени аль-Фараби», Алматы, Казахстан
3ДТОО «Институт космической техники и технологий», Алматы, Казахстан e-mail: [email protected], [email protected], [email protected],
Аннотация. В настоящее время фазированные антенные решетки находят активное применение во многих современных радиотехнических системах. Данные типы антенн являются наиболее перспективными антенными системами и обладают большим преимуществом по свойствам широкополосности, многодиапазонности и усиления, в сравнении с другими антеннами. В данной работе рассматривается один из основных узлов фазированной антенной решетки – делитель мощности. Роль делителя мощности в антенной системе очень важна, так как она позволяет разделять поступающий на вход поток мощности сигнала на несколько выходных. Основной целью настоящей работы является изучение основных типов делителей мощности, применяемых в фазированных антенных решетках, а также разработка делителя мощности 1 к 4 для 4-элементной фазированной антенной решетки. Разработанный делитель выполнен по кольцевому типу деления мощностей. Трассировка схемы делителя проводилась в программе проектирования печатных плат
«Sprint-Layout 6». После сборки и монтажа всех основных узлов фазированной антенной решетки были проведены измерения некоторых характеристик антенны, такие как коэффициент стоячей волны и
140
диаграмма направленности. Для получения более точных результатов измерения были проведены в безэховой камере, а также был использован анализатор спектра FieldFox Analyzer N9915A. По результатам измерений было получено, что антенна достаточно хорошо согласована и имеет значение коэффициента стоячей волны меньше 1,5. Результаты данной работы представляют интерес для дальнейшего исследования и проектирования узлов фазированной антенной решетки в учебных целях.
Ключевые слова: делитель мощности, антенная решетка, КСВ, диаграмма направленности, анализатор спектра.
техникалық журналы
Мерзімді баспасөз басылымының меншік иесі «Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті»
коммерциялық емес акционерлік қоғамы, Алматы, Қазақстан
Бас редактор Профессор, т.ғ.к., В.В. Стояк
Қайта есепке қою туралы куәліктің нөмірі мен күні және берген органның атауы
№ KZ14VPY00024997, күні 17.07.2020,
Қазақстан Республикасының Ақпарат және қоғамдық даму министрлігі
Мерзімділігі Жылына 4 рет (тоқсан сайын)
Мерзімді баспасөз басылымының реттік нөмірі және жарыққа шыққан күні
Жалпы нөмір 60, 1-басылым, 2023 жылғы 31 наурыз
Басылым индексі 74108
Басылым таралымы 200 дана
Баға Келісілген
Баспахана атауы, оның мекен-жайы «Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті»
КЕАҚ баспаханасы, Байтұрсынұлы көшесі, 126/1 үй, А120 каб.
Редакцияның мекен-жайы 0 5 0 0 1 3 , Алм а т ы қ. , «Ғ ұ м а р бе к Дә ук е ев а т ы н да ғы А л м а т ы эн ер г ет и ка ж ә н е ба й ла н ы с ун и в ер с и т ет і » К ЕА Қ, Б а й т ұ р с ы н ұ лы к- с і , 1 2 6 / 1 ү й , ка б. А 2 2 4 , т е л. : 8 ( 7 2 7 ) 2 9 2 5 8 4 8 , 7 08 8 8 0 7 7 9 9 , e - m a i l : v e s t n i k @ a u e s . k z
Выходные данные
Название периодического печатного издания Научно-технический журнал «Вестник Алматинского университета энергетики и связи»
Собственник периодического печатного издания
Некоммерческое акционерное общество «Алматинский университет энергетики и связи имени Гумарбека Даукеева», Алматы, Казахстан
Главный редактор Профессор, к.т.н., Стояк В.В.
Номер и дата свидетельства о постановке на переучет и наименование выдавшего органа
№ KZ14VPY00024997 от 17.07.2020
Министерство информации и общественного развития Республики Казахстан
Периодичность 4 раза в год (ежеквартально)
Порядковый номер и дата выхода в свет
периодического печатного издания Валовый номер 60, выпуск 1, 31 марта 2023
Подписной индекс 74108
Тираж выпуска 200 экз.
Цена Договорная
Наименование типографии, ее адрес Типография НАО «Алматинский университет энергетики и связи имени Гумарбека Даукеева», ул. Байтурсынулы, дом 126/1, каб. А 120
Адрес редакции 050013, г. Алматы, НАО «Алматинский у ниверситет э нергетики и с вязи имени Гумарбека Даукеева», ул. Байтурсынулы, дом 126/1, каб. А 224, т ел.: 8 (727) 292 58 48, 708 880 77 99, e-mail: [email protected]
Issue output
Name of the periodical printed publication Scientific and technical journal "Bulletin of the Almaty University of Power Engineering and Telecommunications"
Owner of the periodical printed publication Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev", Almaty, Kazakhstan
Chief Editor Professor, candidate of technical sciences Stoyak V.V.
Number and date of the registration certificate and the name of the issuing authority
№ KZ14VPY00024997 from 17.07.2020
Ministry of Information and Social Development of the Republic of Kazakhstan
Periodicity 4 times a year (quarterly)
Serial number and date of publication of a periodical printed publication
Number 60, edition 1, March 31, 2023
Subscription index 74108
Circulation of the issue 200 copies
Price Negotiable
The name of the printing house, its address Printing house of Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev", 126/1 Baitursynuly str., office A 120, Almaty, Republic of Kazakhstan
Editorial office address 050013, Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev",
A 2 2 4 , t e l .: 8 (727) 292 58 48, 708 880 77 99, e-mail: [email protected]