• Tidak ada hasil yang ditemukan

A L L - A T - O N C E M U L T I L E V E L I T E R A T I O N FOR BI-HARMONIC SYSTEM

N/A
N/A
Protected

Academic year: 2023

Membagikan "A L L - A T - O N C E M U L T I L E V E L I T E R A T I O N FOR BI-HARMONIC SYSTEM "

Copied!
1
0
0

Teks penuh

(1)

A B S T R A C T S

A L L - A T - O N C E M U L T I L E V E L I T E R A T I O N FOR BI-HARMONIC SYSTEM

Y. Erlangga*

School of Science and Technology, Nazarbayev University, Astana, Kazakhstan *[email protected]

Introduction. We develop a multilevel-based iteration to solve a system of linear equations that approximates the biharmonic equation

Д

2

0

= / in

а

с

ж

2

,

equipped with some boundary conditions on дй. The matrix of coefficients in the system corresponds to an the equivalent coupled system, i.e.,

incorporated in minimal-residual-type approximation, with the largest eigenvalue of <A EW and Z: Rn ^Rm,m<n, and £ = ZTAZ.

Results and discussion. An example of numerical solution at convergence fcii ) (is shown in Figure 1 for "clamp"" boundary conditions. The convergence history is shown in Figure 2, indicating a superlinear convergence [2].

Conclusions. The iterative method converges at a rate that is independent of the mesh size. The rate of convergence is comparable to that of multigrid, but is achieved with simpler components.

Acknowledgments. The research is financially supported partly by NU Seed Grant.

References.

1. Multilevel Projection-based Nested Krylov Iteration for Boundary Value Problem, SIAM J. Sci.

Comput. 30(3) pp. 1572-1595.

2. Y. Erlangga, All-at-once solution of the biharmonic equation using multilevel Krylov methods, Materials and methods. The multilevel iteration is based on the operator [1]

T = 0 - cAZE-1ZT + AnZS^Z7,

Figure 1. Figure 2.

submitted.

104

Referensi

Dokumen terkait

5, 2014 ラン藻の代謝改変によるバイオプラスチック増産 ラン藻代謝工学の新展開 ラン藻は,酸素発生型の光合成を行う細菌である(図 1).淡水,海水,土壌から深海や温泉に至るまで,あら ゆる環境に生育していることが知られている.光合成を 行うことで,光エネルギーと大気中の二酸化炭素の利用 が可能であることから,ラン藻を用いたバイオエネル