,
[1–3]:
0 /
, 1 /
2 2 2 2
t d
u t
u t u t u t
v
x , (1)
x E v
t ,
d – , ; – ;v0 – -
; – ; – ,
sign( ) , – (-1;1),
.
, -
« », ,
, .
. -
:
n
k
k
v t x k l l l v t x l k l l l
t EF x F
0
3 2 1 1
0 3
2 1
0
4 4
,
3 2 1 2
1 0
3 2 1 1
0
t x 2 l k 4 l l l v t x 2 l l k 4 l l l
v
3 2 1 2
1 0
3 2 1 2
1
0
t x 3 l l k 4 l l l v t x 4 l l k 4 l l l
v
, (2)k – , ;l1, l2, l3– -
; – ; – ;F – ; (z) –
;v0 – .
,
, (1) (2) :
n
k k m
i
i
i
v t x k l l l
EF a
t x x t t u
u a x
u
0
3 2 1 0
1 2 , 2 2 2 2
1 4
3 2 1 2
1 0
3 2 1 1
0
t x 2 l k 4 l l l v t x 2 l l k 4 l l l
v
3 2 1 2
1 0
3 2 1 2
1
0
t x 3 l l k 4 l l l v t x 4 l l k 4 l l l
v
, (3)u(t,xi) – i .
(3) « –
»;m – .
(3)
t=0: u(0,x)=0; (0, ) 0 x
x
u (4)
n
k v
l l l t k x t
t E u t x
1 0
3 2 1 0
0
0 4 0 ,
, , 0
0
3 2 1 2 1 0
3 2 1 1 0
3 2 1
1 4 2 4 2 4
v
l l l k l t l
v
l l l k t l
v l l l k t l
0
3 2 1 2 1 0
3 2 1 2
1 4 4 4
3
v
l l l k l t l
v
l l l k l
t l ,
x=L; t,L 0 (5)
, 0 – =0,L – .
, (3)–(5)
:
n
k
v l l l k px a k
px m
i
i
e
v p e EF
x p a u
x p p a u p dx
x p u
d
i0
4
1 0 2
2 2
2
0 3 2 1
, , ,
0
3 2 1 2 1 0
3 2 1 1 0
3 2 1
1 4 2 4 2 4
v
l l l k l l px v
l l l k l px v
l l l k l px
e e
e
0
3 2 1 2 1 0
3 2 1 2
1 4 4 4
3
v
l l l k l l px v
l l l k l l px
e
e
, (6)t=0; u 0,p 0; ( , ) 0 dx
x p u
d , (7)
; 0
x 0
3 2 1 1 0
3 2
1 4
1
4 0
0
0,
vl l l k pl n
k
v l l l pk
e e
E p E p
x p u
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 4 3 4 4 4
2
v l l l k l p l v
l l l k l p l v
l l l k l p l v
l l l k p l
e e
e
e
, (8)L
x ; ( , ) 0
x L p
u . (9) :
x p u e c e c x p
u
app x a x
~ ,
,
1 2 . (10), (10) -
, :
0 3 2 1 1 0
3 2
1 4
4
1 2 0 2
0 2 2
1
, 1
vl l l k l px v
l l l k px n
k p k
a p x
a x
e p e
v a EF
v e a
c e
c x p u
0
3 2 1 2 1 0
3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 4 3 4 4 4
2
v
l l l k l l px v
l l l k l l px v
l l l k l l px v
l l l k l px
e e
e e
xi
a m p
i
e
x p p u
a 1
,
. (11)0 0
1 2 0 2
3
1
,
vpx
a pL a pL n
k
k
e
a v e
e
e e
e e
e p v
a EF x a p u
0 3 2 1 2 1 0
3 2 1 1 0
3 2 1 1 0
3 2
1 4 2 4 2 4
4
v l l l k l p l v
l l l k p l v
l l l k pl v
l l l pk
e e
e e
a pL a pL
a L px a
L px v
l l l k l p l v
l l l k l p l
e e
e e
E e a
e
04 4 4
3
0 3 2 1 2 1 0
3 2 1 2 1
0 3 2 1 2 1 0
3 2 1 1 0
3 2 1 1 0
3 2
1 2 4 2 4
1
4 4
1
vl l l k l p l v
l l l k p l n
k
v l l l k pl v
l l l pk
e e
e e
xi
a m p
i
i v
l l l k l p l v
l l l k l p l
p e x p u a e
e 1
,
1 4
4 4
3
0 3 2 1 2 1 0
3 2 1 2 1
. (12)
, :
1
, 1
,
axm p
i
i
e
x p p u a x
p
u
i0 0
1
1 2
0 2
0 2
3
1
vL a p x v
L a p x a
L px n
k
a L px a p
L s r
r
k
e e e e e
v p a EF
a
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1 1 0
3 2 1 1 0
3 2
1 4 2 4 2 4 3 4
4
v l l l k l p l v
l l l k l p l v
l l l k p l v
l l l k pl v
l l l pk
e e
e e
e
0 3 2 1 1 0
3 2 1 0
3 2 1 2
1 4 4
1 2 0 2
0 4 2
4
1
vl l l k l px v
l l l k px n
k v k
l l l k l p l
e p e
v a EF
v e a
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 4 3 4 4 4
2
v l l l k l l px v
l l l k l l px v
l l l k l l px v
l l l k l px
e e
e e
n
k s
r
a L r px a
rL px s
r
a L r px a
rL px
E e e a
E e a
1 0
1 2 2
0 0
1 2 2
0
0 3 2 1 2 1 0
3 2 1 1 0
3 2 1 1 0
3 2
1 4 2 4 2 4
4
v l l l k l p l v
l l l k p l v
l l l k pl v
l l l pk
e e
e e
0 3 2 1 2 1 0
3 2 1 2
1 4 4 4
3
v l l l k l p l v
l l l k l p l
e
e
. (13):
0 3 2 1 1 0
3 2
1 2 4
1
4 2
0 2
0 2
3
1
,
vl l l k l a
rL p x n
k
v l l l k a
rL p x s
r
k
e e
v p a EF x a
p f
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 2 4 2 3 4
2 2
v l l l k l l a
rL p x v
l l l k l l a
rL p x v
l l l k l a
rL p x
e e
e
0 3 2 1 1 0
3 2 1 0
3 2 1 2
1 4 2 2 4 2 2 4
4 2
v l l l k l a
L rL p x v
l l l k a
L rL p x v
l l l k l l a
rL p x
e e
e
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 2 2 4 2 2 3 4
2 2 2
v l l l k l l a
L rL p x v
l l l k l l a
L rL p x v
l l l k l a
L rL p x
e e
e
0 3 2 1 1 0
3 2 1 0
3 2 1 2
1 4 2 1 4 2 1 4
4 2 2
v l l l k l L a
L r p x v
l l l k L a
L r p x v
l l l k l l a
L rL p x
e e
e
0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1
1 4 2 1 2 4 2 1 3 4
2 1 2
v l l l k l l L a
L r p x v
l l l k l l L a
L r p x v
l l l k l L a
L r p x
e e
e
0 3 2 1 1 0
3 2 1 0
3 2 1 2
1 4 2 1 4 2 1 4
4 1 2
v l l l k l L a
L r p x v
l l l k L a
L r p x v
l l l k l l L a
L r p x
e e
e
0 3 2 1 2 1 0
3 2 1
1 4 2 1 2 4
2 1 2
v l l l k l l L a
L r p x v
l l l k l L a
L r p x
e e
0 3 2 1 2
1 4
3 1 2
v l l l k l l L a
L r p x
e
03 2 1 2
1 4
4 1 2
v l l l k l l L a
L r p x
e
0 2 1 0
1 0
1 0
2 2
1 2 0 2
0
2 n
1
pxvk px vl k px vl k px lv l kk
k
e e e e
p v
a EF
v
a
px lv l ke
3
0 2 1
n
k s
r
v l l l k a
rL p x s
r
a L r px a
rL px v
k l l px
E e e a
E e e a
1 0
4 2 0
0
1 2 2
0 4
0 3 2 1 0
2 1
0 3 2 1 2 1 0
3 2 1 2
1 4 2 4 4
3 2
v l l l k l l a
rL p x v
l l l k l l a
rL p x
e e
0 3 2 1 1 0
3 2 1 1 0
3 2
1 2 1 4 2 1 2 4
1 4 2
v l l l k l a
L r p x v
l l l k l a
L r p x v
l l l k a
L r p x
e e
e
(14)0 3 2 1 2 1 0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 3 4 2 1 4 4
2 1 2
v l l l k l l a
L r p x v
l l l k l l a
L r p x v
l l l k l l a
L r p x
e e
e
.(13) :
m
i
x a p i
e
ix p p u a x
p f x p u
1
, 1 ,
,
. (15)(t,x) f(p,x) :
n
k s
r k
v l l l k a
rl t x
v H l l l k a
rl t x
v a EF x a t
1 0 0
3 2 1 0
3 2 1 2
0 2
3 2 4 2 4
,
0 3 2 1 1 0
3 2 1
1 4 2 4
2
v l l l k l a rL a t x v H
l l l k l a rL a t x
0
3 2 1 1 0
3 2 1
1 4 2 2 4
2 2
v
l l l k l a
rL t x
v H l l l k l a
rL t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 2 4
2 2
v
l l l k l l a
rL t x
v H
l l l k l l a
rL t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 3 4
2 3
v
l l l k l l a
rL t x
v H
l l l k l l a
rL t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 4 4
4 2
v
l l l k l l a
rL t x
v H
l l l k l l a
rL t x
0 3 2 1 0
3 2
1 2 1 4
1 4 2
v l l l k a
L r a t x v H
l l l k a
L r a t x
0 3 2 1 1 0
3 2 1
1 4 2 1 4
1 2
v l l l k l a
L r a t x v H
l l l k l a
L r a t x
0
3 2 1 1 0
3 2 1
1 4 2 1 2 4
2 1 2
v
l l l k l a
L r a t x v H
l l l k l a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 2 4
1 2 2
v
l l l k l l a
L r a t x v H
l l l k l l a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 3 4
1 3 2
v
l l l k l l a
L r a t x v H
l l l k l l a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 4 4
4 1 2
v
l l l k l l a
L r a t x v H
l l l k l l a
L r a t x
0 3 2 1 0
3 2
1 2 1 4
4 1
2
v l l l k L a
L r a t x v H
l l l k L a
L r a t x
0
3 2 1 1 0
3 2 1
1 4 2 1 4
1 2
v
l l l k l L a
L r a t x v H
l l l k l L a
L r a t x
0
3 2 1 1 0
3 2 1
1 4 2 1 2 4
1 2 2
v
l l l k l L a
L r a t x v H
l l l k l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 2 4
1 2 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 3 4
1 3 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 4 4
1 4 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
0 3 2 1 0
3 2
1
2 1 4
1 4 2
v l l l k L a
L r a t x v H
l l l k L a
L r a t x
0
3 2 1 1 0
3 2 1
1 4 2 1 4
1 2
v
l l l k l L a
L r a t x v H
l l l k l L a
L r a t x
0
3 2 1 1 0
3 2 1
1 4 2 1 2 4
1 2 2
v
l l l k l L a
L r a t x v H
l l l k l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 2 4
1 2 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 3 4
1 3 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 4 4
1 4 2
v
l l l k l l L a
L r a t x v H
l l l k l l L a
L r a t x
s
r a
L t r
a H t rL E H
a
0
0 2 2 1
3 2 1 1 1 0
3 2 1
0 2 4 2 4
v l l l k l a rL a t x v H
l l l k a rL a t x E H
a n
k s
z
0
3 2 1 2 1 0
3 2 1 2
1 4 2 4 4
3 2
v
l l l k l l a rL a t x v H
l l l k l l a rL a t x H
0 3 2 1 1 0
3 2
1 2 1 4
1 4 2
v l l l k l a
L r a t x v H
l l l k a
L r a t x
H (16)
0
3 2 1 2 1 0
3 2 1
1 4 2 1 2 4
1 2 2
v
l l l k l l a
L r a t x v H
l l l k l a
L r a t x H
0
3 2 1 2 1 0
3 2 1 2
1 4 2 1 4 4
1 3 2
v
l l l k l l a
L r a t x v H
l l l k l l a
L r a t x
H .
xi
p u ,
1
1 ,
,x t x
t
u , (17)
0
2 1
1 2
2 , , 1
! , 1
,
j
i
x j x j t
x a t x
t
u , (18)
0
3 2 2 3
1 1 1
3
3 , , , ,
! , 1
,
j
i
jx x x t mx
x x j t
x a t x
t u
3 2 2 1 1 0
1 2
,
! ,
1 t x x x j x x
j a
j
i
. (19)
x
it u ,
2
2 0
1 1
0 0
1
! , 1
! , , 1
,
i
g j
j g g
g g i
g j
j i
i
j
jx a x x j t
x a t x
t u
g i
g j
ij i i
g
g
t x j x
j x a
j x t
1
1 1 0
1 1 2
1
, , 1
! 1 1
,
,
, (20)x
it,
–a / p
jexp jx
ip / a f p , x
i , -[4],
x
ig2 – g2 2
1
, x ,..., x
ix
., :
m
i
x
it u x
t x t u
1
, ,
,
, (21)x
it
u ,
(23).1.Nikitin L.V., Tyurehodgaev A.N. Wave Propagation and Vibration of Elastic Rods with Interfacial Frictional Slip. Wave Motion 12 (1990) 513-526 North-Holland.
2.Nikitin L.V., Tyurehodgaev A.N. Defor d’un pipeline souterrain sous l’action de l’onde sismique. Deformation of the Underground Pipeline under Action of Seismic Wave. XIIth European Conference of Soil Mechanics and Geotechnical Engineering. 7-10 June 1999 Amsterdam, the Netherlands.
3. ., . -
//
. . 1987. 1.
. 98-106.
4. ., . -
. ., 1965.
, -
i ,
,
i .
Summary
Solution of the problem about longitudinal vibration of the rail in railway motion which consists of six-axis van and lies on ties taking into account dry friction on the “wheel-rail” contact are provided.
. . . ,
. 2.04.06 .
. .
2.
. -
. -
, -
( -
, ) -
,
( ) -
.
- - -
, [1].
- ,
- - .
, -
- [2–4].
-
, -
- . - -
, -
. -
, ,
, -
, ,
. ,
- ,
. -
, ;
[5–7].
-
, «
»