• Tidak ada hasil yang ditemukan

nblib.library.kz - /elib/library.kz/jurnal/v_2006_3/

N/A
N/A
Protected

Academic year: 2023

Membagikan "nblib.library.kz - /elib/library.kz/jurnal/v_2006_3/"

Copied!
4
0
0

Teks penuh

(1)

12

2006. 3

1. ., ., -

. . .: , 1959.

1084 .

2. . -

-

V // , . 2004. 5.

. 178-181.

3. ., . -

. .: , 1986. 544 .

4. . -

V

//

. , . . -

. , 2005. . II. . 236-238.

5. . . ., 2003. 431 .

V i i

, -

i i .

i i

i .

Summary

The task of synthesis of seven parameters of a spatial mechanism of V class upon set positions of input and output links is considered. The solving of excluding of unknown from a system of the power multinomials with the unknowns

621.01:531

. . . 17.03.06 .

. .

(2+1)-

1960- . ,

, -

,

, ,

[1,

c. 288–289]. -

- –

.

0

6 x xxx

t uu u

u (1)

, -

-

[2]. ,

(1+1) ( )

(1) -

( ., , [1–5]), -

.

1970 . [6] -

0 )

6

(uxxx u2 ux ut x uyy (2)

-

. 1976 . [7]

(2) -

. [8],

[9] (2)

. (2)

,

.

1988 . . . [10, . 188–189] -

-

u w v wu

vu u

u

ut xxx yyy y x ( y x) 2

) 1 ( )

( , (3)

y

x u

u 3( 2) , wy 3(u2)x. (4) (3), (4)

-

, -

(3), (4) .

[11] (2+1)- -

0

4 x V y VxU

xxy

t , (5)

(2)

13

x

Vy , Ux y, (6) [5, . 10–11]

- 0

) )(

(DyDt D2yD2x ,

n t m

xD F G

D ( )

t t x x n

t t m x

x ' ' F(x,t)G(x',t') ' ,' ,

(5), (6) - .

) , ,

(x y t – -

, .

, x

- x 1.

(5), (6) ) , ( )

, ,

(x y t t 0 0 x y , (7) )

,

0(x y – -

.

1965 . ,

(1) -

– . -

, , .

, -

, « » -

.

-

[3, c. 15]. -

, .

, . -

- - [12, . 2].

, - -

. -

,

, [12, . 2].

(2+1)- (5),

(6)

: 0

) , ,

(x y t x . (8)

, (2+1)-

(5), (6) (7) (8)

.

1.(2+1)- -

(5), (6) -

U0

x , (9) B

y A

t , (10)

) , (y t ,

0 0

U0 ,

2

1 , (11)

) ( ) ( 2

0

1 2 1

x y y x xy

A

0

) ( ) (

2 2 x1 y y1 x

xy , (12)

i i

i B i

y x x

y x x

) ( 2

) ( 2

1 1

1 1

, (13)

y

t . (14)

. ,

- (9), (10)

tx

xt ,

]) , [ (

]) , [

(U0t Ax U0 A U0y Bx U0 B

0 )

( t y , (15) [A, B] =ABBA.

(15) :

0 ] , [ 0

0 A U A

U t x , (16)

0 ] , [ 0

0 B U B

U y x , (17)

y 0

t . (18)

(11)–(14) (17), (18) -

, (16)

(2+1)-

(5),(6). .

. , -

y t,

(9). x, .

) ,

(y t . ,

(15), (14).

(3)

14

2006. 3

2. (2+1)- -

(5), (6) U0

x , (19) B

y A

t

2 , (20) )

, (y t ,

0 0

U0 ,

2

1 , t y, (21)

) ( ) ( 2

0

1 2 1

x y y x xy

A

0

) ( ) (

2 2 x1 y y1 x

xy , (22)

i i

i B i

y x x

y x x

) ( 2

) ( 2

1 1

1 1

,(23)

i i

i C i

x

x 1

1

2

2 . (24)

. ,

- (19), (20)

tx xt

]) , [ (

]) , [

(U0t Ax U0 A U0y Bx BU0

0 ) (

]) , [

( 0

2

y t

x C U

C , (25)

[A, B] =ABBA.

(15) :

0 ] , [ 0

0 A U A

U t x , (26)

0 ] ,

[ 0

0 B BU

U y x , (27)

0 ] , [CU0

Cx , (28)

y 0

t . (29)

(21)–(24) (27)–(29) -

, (26)

(2+1)- (5),

(6). .

3. (2+1)- -

(5), (6) U0

x , (30) D

B

y A

t

3

2 , (31)

) , (y t ,

0 0

U0 ,

2

1 , t y, (32)

) ( ) ( 2

0

1 2 1

x y y x xy

A

0

) ( ) (

2 2 x1 y y1 x

xy , (33)

i i

i B i

y x x

y x x

) ( 2

) ( 2

1 1

1 1

, (34)

i i

i D i

C

x

x 1

1

2

2 . (35)

. ,

- (30), (31)

tx

xt ,

]) , [ (

]) , [

(U0t Ax U0 A U0y Bx BU0

]) , [ ( ]) , [

( 0 3 0

2

x

x C U D DU

C

0 )

( t y , (36) [A, B] =ABBA.

(36) :

0 ] , [ 0

0 A U A

U t x , (37)

0 ] ,

[ 0

0 B BU

U y x , (38)

0 ] , [C U0

Cx , (39) 0

] , [DU0

Dx , (40)

y 0

t . (41)

(32)–(35) (38)–(41) -

, (37)

(2+1)- (5),

(6). .

, -

, (2+1)-

(5)–(8):

1) B

U

y t

x 0

,

2) B C

U

y t

x

2

0 ,

(4)

15

3) B C D

U

y t

x

3 2

0 ,

. . . ………

( , ),y t

0 0

U0 ,

2 1

, t y,

) ( ) ( 2

0

1 2 1

x y y x xy

A

0

) ( ) (

2 2 x1 y y1 x

xy ,

i i

i B i

y x x

y x x

) ( 2

) ( 2

1 1

1 1

,

i i

i D i

C

x

x 1

1

2

... 2 .

(2+1)- (5)–(8)

.

1. ., ., ., . -

. ., 1988. 694 . 2.Washimi M., Taniuti T. Propagation of ion acoustic solitary waves of small amplitude // Phys. Rev. Lett. 1966.

V. 17. . 996-998.

3. ., .

. ., 1987. 477 c.

4. ., . -

. ., 1986. 527 .

5. . / .

. . . ., 1980. 319 .

6. ., .

// . . 1970. . 192. . 753-756.

7.Kako M., Rowland s G. Two dimensional stability of ion acoustic solitons // Plasma Physics. 1976. V. 18.

. 165-170.

8.Tappert F., Varma C.M. Asymptotic theory of self- trapping of heat pulses in solids // Phys. Rev. Lett. 1970. V. 25.

. 1108-1111.

9.Narayanamyrti V., Varma C.M. Nonlinear propagation of heat pulses in solids // Phys. Rev. Lett. 1970. V. 25. . 1105-1108.

10. . -

. , 1991. 232 .

11. . (2+1)-

// . . 6. 2001.

C. 5-11.

12. . . http://intra.rfbr.

ru/pub/knigi/janus/pe-linovskij/pelinovs.htm. 28.02.2001.

(2+1)- i i

. Summary

The hierarchy of the linear differential systems for the (2+1)-dimensional nonlinear Korteweg de Vries model is constructed.

517.95.958

, . 28.03.06 .

Referensi

Dokumen terkait

Based on the electronic absorption spectra Table 1 and the apparent split in peak 1 Figure 1, it was deduced to contain mono cis geometric isomers of α-carotene, in which the cis bonds

Table 3continued Ref Topic Source Date of access 16 Media release illustrating current company example Herbalife for how official rules and actual practices can be decoupled