42
2007. 2
1. . -
. .: , 1969. . 622.
2.Brener A.M., Bolgov N.P., Sokolov N.M., Tarat E.Ya.
The application of random walk methods to the modelling of liquid distribution on the regular shelf packing // Theor. Found.
of Chem. Eng. 1981. V. 15(1). P. 62-67.
3.Brener A.M. Adaptation of random walk methods to the modelling of liquid distribution in packed columns // Advances in Fluid Mechanics, IV. Southampton, Boston: WIT Press, 2002.
P. 291-300.
4. ., ., . . .:
, 1982. C. 696.
i -
i .
i .
.
Summary
The new approach to modelling the liquid distribution influence on the heat and mass transfer intensity in the gas- liquid chemical reactors has been carried out. The expressions obtained can be applied to the design of reactors with allowance for the scaling phenomena.
513.83
. . 3.03.07 .
. . , . .
- ,
-
, . . .
- -
, -
. . [1, 2] ( . [3, c. 27]
-
). , -
-
L n , -
L
, -
:
0 0
0
u
Lu , L u
1 0u
1u
0, ...,
1
0 S S
S
u u
u
L . (1)
-
[4, c.179] N f,
m -
0 )
( A E
mf
– -
; – -
), -
,
, f
N -
, .
N -
- ,
f
if
f
0,
1, , , ,
(1)
0
,
0
f
Af Af
1f
1f
0, ... ,
1 i i
i
f f
Af .
(1)
, ,
-
. . [5].
- - -
. , ,
43 ,
- -
. -
. . [5]
,
, -
- .
(1) -
-
1 3 2
, , , L L L
L .
. -
) )(
( ) )(
(
1 0 2 0 20
y L y L y
L Ly
0 ) )(
( L
Sy
0 S, (2)
– ;
L
i–
;
0– .
(1) :
2 0 2
0 2 0 0
1
0
( ) ( )
) ) (
) ( ( )
( y x y x
x y x
y .
(3)
(2) (1),
y L y
L y
L 1 ( )( )
) )(
1 (
20 2 2 0 0 0 1 0 0 0 0
y
SL )( )
(
1 0 0 1 1 0 20
) )(
1 ( y L
2 0 0 2 3
0 2 1 2 0
) )(
( )
)(
1 (
y L y
L
y L y
L 1 ( )( )
) )(
1 (
40 2 2 2 0 3 0 1 2 0
S S
y
L )( )
(
0 01 ( )( )
10 1 0
S S
y
L
0 )
)(
1 (
20 2 2
0
S S
y
L . (4)
- )
k(
0, k = 0,1,2,...
0 :
)
(
0 0L
0y
0; (5) 1 0
: )
(
0 1 1 00
0
L y L y ; (6)
1 0 : 1
)
(
1 1 2 00 2 2 0 0 2
0
L y L y L y ; (7)
- - - - 1
: 1 )
(
1 1 10 0 0
0 S S
L y
S SL y
S1 0
0 1 1 0
y L y
L
S S. (8)
0
(1), (3) (4) -
0
0
Ly , (9) (1), (3) (5)
) 0 (
! 1
1
00 1
Ly Ly . (10)
(1), (3) (8)
0
, -
:
) 0 (
! 2 ) 1 (
! 1
1
2 0 2 2 0 1 0
2
Ly
Ly Ly . (11)
(1), (3)
(7)
0-
) (
! 2 ) 1 (
! 1
1
2 2 2 2 0 1 0
S S
S
Ly Ly Ly
0 ) (
) (
! 1
0 0
0 S
S
S
Ly
S . (12)
)
0
( x
y -
,
0
, y
1( x ), y
2( x ),..., y
S( x ) – -
, -
)
0
( x
y -
0
, -
(9)–(12).
, L (2)
y Ay
Ly ,
44
2007. 2
– , -
(9)–(12)
- :
0 0 0
1 0 1 0 0
2 0 2 0 1
0 0 1
0, ,
,
S S S
Ay y
Ay y y
Ay y y
Ay y y
0 0
0
y
Ay , Ay
1 0( y
1y
0) , )
(
2 10
2
y y
Ay , ..., Ay
S 0( y
Sy
S 1) . (13) - ,
. . [6], -
-
, -
. .
. u
k0– ,
1
u
k– ,
(13) L
L
1, u
k0, u
k1-
L
2. -
L
2u
k0, u
k1c
ku
k0-
1 2 0
||
2|| ||
|| u
k Lu
k L(14) k.
(14) -
.
1. -
u x q u
Lu ( ) , x G , | G | , (15)
-
, -
, , -
(1), [7, 8]:
) 2( , 0
) 2( 1
,
|| | | || ||
|| u
k j L Gc u
k j L G, (16)
const
| Im
| q ( x ) L
1( G ) ,
(13), -
(16)
) 2( , 1 ) 2( 1
,
|| || ||
|| u
k j L Gc u
k j L G. ,
(14) ,
const
| Im
| q ( x ) L
1( G ) ,
c
k,
c
k.
- .
,
Lu
kj ku
kj ku
kj 1. . [10], . . [11].
2. (14)
[13, c. 418], - (13).
- .
1.
1 0
,
kk
u
u
(15) (13)
L
2(G), -
0 1
0
,
k k kk
u c u
u L
2(G).
2.
- (13)
, -
. ,
-
, -
45
. ,
(13) ,
c
k, -
(13)
c
k. -
, -
(1)
-
, -
(13), .
. . . ,
. . . , . . . -
, -
.
1. . -
// . 1951. . 77, 1. . 11-14.
2. . -
// . 1971.
. 26, . 4. . 15-41.
3. . -
. ., 1969. 528 .
4. ., . -
. ., 1966. 544 .
5. .
-
//
. . 1976. . 142. . 148-155.
6. . -
. I, II // -
. 1980. 5. . 777-794; 6. . 981-1009.
7. .
// . 1983. . 273, 4. . 807-810.
8. . -
// - . 1982. . 18, 10. . 1684-1694.
9. ., .
- . ., 1965. 448 .
10. .
-
// . 1986.
. 22, 12. . 2059-2071.
11. . -
-
// . ., 1977. . 13,
2. . 294-304.
i -
i .
Summary
This article offers and maintaines New formulas for building Lines of the united functions non-self-conjugacy of equations.
517.927.25
. . ,
. 4.02.07 .