• Tidak ada hasil yang ditemukan

z r X z z L Y , ; (2) dV r d z z K Y V , , (3) X, Y – - ; KV – - ;z – - ; r – ; – ;V – ;L

N/A
N/A
Protected

Academic year: 2023

Membagikan "z r X z z L Y , ; (2) dV r d z z K Y V , , (3) X, Y – - ; KV – - ;z – - ; r – ; – ;V – ;L"

Copied!
4
0
0

Teks penuh

(1)

39

. . , . . , . . , . .

, -

, -

, -

. -

[1, 2].

- [1].

-

, -

. -

,

- .

, , -

[2],

-

, -

.

- - n, C

, , -

[1]:

n n n C

C

n n

! exp 1

1

0

, (1) –

.

- ,

.

, -

-

- - [2].

,

- - ,

-

. -

( )

[1, 2].

: z

r X z z L

Y , ; (2)

dV r d z z K

Y

V , , (3)

X, Y – -

; KV – -

;z – -

; r – ; –

;V – ;L – -

.

: Y

X dV k

d

st , (4)

kst– .

(1), (2) :

. ln 0

,

, 0 ,

2 2

2 2

z X z r L z z D

X

z r Y z z D

Y

(5)

-

ln 1

, V KV

z r K

z

D , (6)

– [2]:

(2)

40

2007. 2

k L

st . (7)

, -

f V

V K Ldf

K 1f

. (8) -

0

1 1

Y Y 1 f K ds

0

1 1

1 exp 1

1

z V Y

Y Y f K ds

J

0

0

1 exp 1 .

1

z st

V Y

X k f K ds

J

(9)

= 1 -

[2].

z V Y

ds J K

Y f Y

0 0

1 1

z V Y

st

K ds

J f X k

0

0 . (10)

: 1:

0

1 1

exp f K ds

J

H V Y

0 0 0

1 1 1

exp Y

X ds k

K J f

st H

V Y

; (11) = 1:

0

ds J K

f

H

V Y

0 0 0

1

1 Y

X ds k

J K

f

H st

V Y

. (12) n

-

, -

: 1:

1 0 1 0

1 1 exp

1 1 exp

ds K J f

ds K J f

n

i H

i V Y

n

i H

i V Y

i i

0

1

0

Y X k

st

; (13) = 1:

n

i H

i V Y

n

i H

i V Y

i i

ds K J f

ds K J f

1 0 1 0

1 1 1

. (14)

- - n

:

1 0 1 0

1 1 exp

1 1 exp

ds K J f

ds K J f

n

i H

i V Y

n

i H

i V Y

i i

0

1

0

Y X k

st

. (15) - [3],

RS, -

- HS - .

:

a D RS aD 4

2 ln , (16)

(3)

41

S S

S a H

hR H

J h

j 2

2

exp 2

2 . (17)

,

: HS, -

, -

, -

- .

-

, -

[1, 2].

-

a d d I a

i

exp 4 4

0 0

min . (18)

d0

a ( , -

).

a d0

- I imin - .

- - :

1:

1 1 1

exp

1 1 1

exp

S S

H H

K G F

H H

K G F

; (19)

= 1:

1 1

1

S S

H H

GK F

H H

GK F

. (20)

F – ;G – -

.

-

[4], -

:

h h

h , (21) N

h 1 HS

, (22)

1 ln 1 1

N 1 , (23)

h* – -

( -

).

, -

,

, -

, -

.

- .

1 2 3 4 5 6 7 8

0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 a

d0

I imin

(12)

(4)

42

2007. 2

1. . -

. .: , 1969. . 622.

2.Brener A.M., Bolgov N.P., Sokolov N.M., Tarat E.Ya.

The application of random walk methods to the modelling of liquid distribution on the regular shelf packing // Theor. Found.

of Chem. Eng. 1981. V. 15(1). P. 62-67.

3.Brener A.M. Adaptation of random walk methods to the modelling of liquid distribution in packed columns // Advances in Fluid Mechanics, IV. Southampton, Boston: WIT Press, 2002.

P. 291-300.

4. ., ., . . .:

, 1982. C. 696.

i -

i .

i .

.

Summary

The new approach to modelling the liquid distribution influence on the heat and mass transfer intensity in the gas- liquid chemical reactors has been carried out. The expressions obtained can be applied to the design of reactors with allowance for the scaling phenomena.

513.83

. . 3.03.07 .

. . , . .

- ,

-

, . . .

- -

, -

. . [1, 2] ( . [3, c. 27]

-

). , -

-

L n , -

L

, -

:

0 0

0

u

Lu

, L u1 0u1 u0, ...,

1

0 S S

S

u u

u

L

. (1)

-

[4, c.179] N f,

m -

0 )

( A E

m

f

– -

; – -

), -

,

, f

N -

, .

N -

- ,

f

i

f

f

0

,

1

, ,

, ,

(1)

0

,

0

f

Af Af

1

f

1

f

0, ... ,

1 i i

i

f f

Af

.

(1)

, ,

-

. . [5].

- - -

. , ,

Referensi

Dokumen terkait

Belanja Pegawai Yang Masih Harus Dibayar yaitu kewajiban yang timbul akibat hak atas pegawai, baik dalam bentuk uang maupun barang yang ditetapkan berdasarkan peraturan

Murid Tukang Polisi Pelayan Pintu Jendela Kursi Kapal Susu Gula The Kamar tidur Meja makan Lemari buku Meja tulis Sepeda motor Lampu listrik Ini itu Besar Tinggi Rajin Malas Bodoh

After the writer find out the result o f research, that reading interest contributes a lot to reading comprehension, student should know their reading

[r]

The European Joint Doctora: A Strategic Tool fohigher Education Fnhancing the attractiveness of the European and Research Areas, in internationalization of European Higher

Photograph of the Montastrea-Diplo* zone taken in water 10 m deep Transect

Canonical vectors: Considerx2Rn, the vectorxcan be decomposed as: x=Pn i=1xiei=x1e1+...+xnen whereei2Rnbut are 0’s all but theithterm equals 1, the canonical vector.. • Canonical

Some examples of Dedekind domains are the ring of integers, the polynomial ring F[X] in one variable over any field F, and any other principal ideal domain, but not all Dedekind domains