• Tidak ada hasil yang ditemukan

12 B ⇥ Q = { ( b,q ) 2 R | b 2 B,q 2 Q } • A ⇥ P = { ( a,p ) 2 R | a 2 A,p 2 P }• R : • Ordermattersfor A ⇥ A ,if x,y 2 A and x 6 = y ,then ( x,y ) 6 =( y,x ) .Consider • A ⇥ B 6 = B ⇥ A . • Important:Ordermatters. A ⇥ B ⇥ ... ⇥ Z = { ( a,b,...,z ) | a 2 A,b 2 B,...,z 2 Z } . Givensets A,B,...,Z ,theircartesianproductisthesetoforderedtuples: 7.4CartesianProducts • Then 9 y 2 A s.t. y 2 A and y/ 2 B . A * B : • i.e.Proveallelementsin A arein B andviceversa.Toprove Toprovesets A = B thenshow ( A ⇢ B ) ^ ( B ⇢ A ) . 7.3ProofTechniquesforStatementsaboutSets • or: ( A \ B ) = A [ B b. A \ B =( A [ B ) • or: ( A [ B ) = A \ B a. A [ B =( A \ B ) Proposition18: DeMorgan’sLaws ( A ⇥ B ) \ ( D ⇥ E )=( A \ D ) ⇥ ( B \ E ) . Proposition17: Considersets A,B , D and E .Then:

N/A
N/A
Protected

Academic year: 2025

Membagikan "12 B ⇥ Q = { ( b,q ) 2 R | b 2 B,q 2 Q } • A ⇥ P = { ( a,p ) 2 R | a 2 A,p 2 P }• R : • Ordermattersfor A ⇥ A ,if x,y 2 A and x 6 = y ,then ( x,y ) 6 =( y,x ) .Consider • A ⇥ B 6 = B ⇥ A . • Important:Ordermatters. A ⇥ B ⇥ ... ⇥ Z = { ( a,b,...,z ) | a 2 A,b 2 B,...,z 2 Z } . Givensets A,B,...,Z ,theircartesianproductisthesetoforderedtuples: 7.4CartesianProducts • Then 9 y 2 A s.t. y 2 A and y/ 2 B . A * B : • i.e.Proveallelementsin A arein B andviceversa.Toprove Toprovesets A = B thenshow ( A ⇢ B ) ^ ( B ⇢ A ) . 7.3ProofTechniquesforStatementsaboutSets • or: ( A \ B ) = A [ B b. A \ B =( A [ B ) • or: ( A [ B ) = A \ B a. A [ B =( A \ B ) Proposition18: DeMorgan’sLaws ( A ⇥ B ) \ ( D ⇥ E )=( A \ D ) ⇥ ( B \ E ) . Proposition17: Considersets A,B , D and E .Then:"

Copied!
3
0
0

Teks penuh

(1)

Proposition 17: Consider setsA, B,DandE. Then:

(A⇥B)\(D⇥E) = (A\D)⇥(B\E).

Proposition 18: De Morgan’s Laws a. AC[BC= (A\B)C

• or: (AC[BC)C=A\B b. AC\BC= (A[B)C

• or: (AC\BC)C=A[B

7.3 Proof Techniques for Statements about Sets

To prove setsA=B then show(A⇢B)^(B⇢A).

• i.e. Prove all elements inAare inBand vice versa.

To proveA*B:

• Then9y2As.t. y2Aandy /2B.

7.4 Cartesian Products

Given setsA, B, ..., Z, their cartesian product is the set of ordered tuples:

A⇥B⇥...⇥Z={(a, b, ..., z)|a2A, b2B, ..., z2Z}.

• Important: Order matters.

• A⇥B6=B⇥A.

• Order matters forA⇥A, ifx, y2Aandx6=y, then(x, y)6= (y, x).

ConsiderR2:

• A⇥P ={(a, p)2R2|a2A, p2P}

• B⇥Q={(b, q)2R2|b2B, q2Q}

12

(2)

Consider the cartesian product of a setS with itself repeatedktimes,Sk: Sk= S⇥S⇥...⇥S

| {z }

k times ={(s1, s2, ..., sk)|si2S, 8i2{1,2, ..., k}}

• The elements= (s1, s2, ..., sk)is a vector.

• Eachsi2S fori2{1, ..., k}is a co-ordinate of vectors.

• The diagonal of setSkis the following subset ofSk;{(x, x, ..., x)2Sk|x2 S}.

– E.g. If A = {1,2,3}, then the diagonal of A3 = A⇥A⇥A = {(a, a, a)2A3|a2A}={(1,1,1),(2,2,2),(3,3,3)}.

7.5 Euclidean Spaces

An example of a cartesian product is the Euclidean spaceRn=R⇥R⇥...⇥R for somen2N.

• ConsiderRn, each elementx2Rnis a point or a vector of spaceRn.

• Every vectorx2Rnis written as: x= (x1, x2, ..., xn)2Rn. Vector operations:

• (Summation) Let vectorsx, y2Rn, thenx+y= (x1+y1, x2+y2, ..., xn+ yn).

• ( x) Let 2Randx2Rn, then x= ( x1, x2, ..., xn).

Canonical vectors: Considerx2Rn, the vectorxcan be decomposed as:

x=Pn

i=1xiei=x1e1+...+xnen

whereei2Rnbut are 0’s all but theithterm equals 1, the canonical vector.

• Canonical decomposition: The decompositionx=x1e1+...+xnen. Definition: x >> y () xi> yi8i2{1, ..., n}

Definition: x > y () (xi yi)^(9xk> yk)

• ‘at least one greater than’

Definition: x y () (xi yi)

• It is possible thatxi=yi8i={1,2, ..., n}.

13

(3)

7.6 Power Sets

Let A be a set. Then the power set, denoted 2A is defined as the set of all subsets ofA.

• If setAhask elements, then the power set2Ahas2k elements.

8 Partition of a Set

Definition: Partition of a set

A (finite) partition of a non-empty setS is a finite collection of non-empty subsetsB1, B2, ..., Bk⇢S, for somek2N, such that:

Bi\Bj=;, ifi6=j and

S=Sk i=1Bi.

• B={B1, B2, ..., Bk}is a partition ofS.

• B is a set whose elements are subsets decomposing setS.

Definition: Refinement

Consider two partitionsBandCof a non-empty setS. If for every element Ci2C, there are elementsBj1, ..., Bjs2Bsuch that:

Ci=Ss r=1Bjr

thenBrefinesCor equivalentlyBis a refinement ofC.

• IfB refinesCthenCis a coarsening ofB.

• Any partitionB ofSrefines itself.

• IfBrefinesCandB refinesD, thenB is a common refinement ofCand D.

• IfBrefinesCand they are different partitions, thenB is a proper refine- ment ofC.

Example 29: SupposeS ={1,2,3,4,5}. Consider the following 3 partitions of S: R=P={{1,2},{3,4,5}}andQ={{1},{2},{3,4,5}}.

• Qis a proper refinement ofRandP.

• Qis a common refinement ofRandP.

• RandP are proper coarsening ofQ.

• P is a refinement ofR, but not a proper refinement.

• P is a coarsening ofR, but not a proper coarsening.

• P is a common coarsening ofRandQ.

14

Referensi

Dokumen terkait

Menindaklanjuti surat Dekan Fakultas Kedokteran Universitas Muhammadiyah Palembang tanggal 13 Oktober 2015 Nomor : 977/1-13/FK-UMP/X/2015 tentang izin Pengambilan Data bagi

Hasil penentuan derajat ketengikan sampel minyak tanpa dan dengan penambahan butil hidroksi toluen (BHT) dan vitamin E pada penyim­ panan minggu ke 0, 1, 2, 3, 4, 5 dan ke

Segi-8 beraturan merupakan gabungan dari 8 segitiga sama kaki dengan besar sudut yang diapit oleh kedua sisi yang sama panjang adalah sebesar 45 0. Dari soal

Pelemahan bursa global dipicu oleh aksi profit taking para pelaku pasar  di  tengah  testimonial  dari  Gubenur  The  Fed  mengenai  langkah  kebijakan  lanjutan 

Pendapatan dan Belanja Daerah Kabupaten Banyuwangi Tahun Anggaran 2016 serta pelaksanaan pengadaan barang/jasa pada Badan Pemberdayaan Masyarakat dan Pemerintahan

(4) Kondisi curah hujan di bawah normal, kemarau panjang, dan/atau iklim kering sebagaimana dimaksud pada ayat (3) sesuai dengan publikasi dari lembaga non kementerian

Makanan yang disajikan dapat mengandung beberapa bahan yang dapat menyebabkan alergi seperti Susu, Gluten, Telur, Gandum, Kedelai, Kacang-Kacangan, Ikan, Kerang.. All prices are

[r]