• Tidak ada hasil yang ditemukan

C HAPTER 4: R ESULTS AND D ISCUSSIONS

4-1 Cyclotomic Cosets

By narrowing down our focus on prime numbers pas modulus in constructing cyclo- tomic cosets modulo p, we observed a certain pattern on two types of primes p. We consider the primespwhere2has orderp−1modulopor p−12 modulop. Examples ofp that has orderp−1modulop is3,5,11,13,19,29,37whereas7,17,23,41and 47have p−12 modulop. Based on the primesp, we observed a pattern on the number of elements for the cyclotomic cosets modulop2 andp3. The following theorems are the result of our observations.

Theorem 4.1. Letp be an odd prime. Suppose2is a primitive root modulopand 2 has orderp2−pmodulop2. Then, there are exactly two distinct nonzero2-cyclotomic cosets modulop2.

Proof. The2-cyclotomic coset modulop2with coset representative1is C1 ={1,2,22, ...,2t1−1},

where2t1 ≡ 1(modp2). Since2has orderp2−pmodulop2, i.e. 2p2−p ≡ 1(modp2), then we havet1 =p2 −p, and so|C1|=p2−p.

Next, since all the elements in C1 is either 1 or even, we see thatpbeing an odd prime is not inC1. Thus, we construct the second 2-cyclotomic coset modulop2 with coset representativep, that is,

Cp ={p,2p,22p, ...,2tp−1p},

where2tpp≡p(modp2). The condition2tpp≡p(modp2) is equivalent top2|2tpp−p, that is,p|2tp−1. Since2is a primitive root modulop, thentp =φ(p) =p−1where φis the Euler-phi function, and so|Cp|=p−1. Now we have

C1 ={1,2,22, ...,2p2−p−1}, and Cp ={p,2p,22p, ...,2p−2p},

23

If y ∈ C1 ∩ Cp, then y ∈ C1 and y ∈ Cp, and so y = 2j and y = 2kp for some integersj, k(w.l.o.g we may assume thatj > k). Then, we have2j = 2kpthat implies 2j−k = p, which is a contradiction as an odd prime pcannot be even. Therefore, we conclude thatC1∩Cp =∅. Next, clearly for allz ∈Zp2 ⊆C1∪Cp∪ {0}as we have

|C1 ∪Cp ∪ {0}| = p2 −p+p−1 + 1 = p2 = |Zp2|. Therefore, we conclude that Zp2 =C1∪Cp∪ {0}. The results follows directly.

Theorem 4.2. Letpbe an odd prime. Suppose2has orderp3−p2 modulop3. Then, there are exactly three distinct nonzero 2-cyclotomic cosets modulop3.

Proof. Given2has orderp3−p2modulop3, then

2p3−p2 ≡1(mod p3). (4.1) Thus, by Euler’s Theorem together with the definition of order, we have

2p2−p ≡1(mod p2), (4.2)

and 2p−1 ≡1(mod p). (4.3)

The first2-cyclotomic coset modulop3 with coset representative1is C1 ={1,2,22, ...,2t1−1},

where2t1 ≡1(modp3). From (4.1), we see thatt1 =p3−p2 and so|C1| =p3−p2. Next, sincep /∈C1, we construct

Cp ={p,2p,22p, ...,2tp−1p},

where2tpp≡p(modp3) which is equivalent to2tp ≡1(modp2) and sotp =p2−p=

|Cp|(follows from (4.2)). If p2 ∈ Cp, then p2 = 2ipfor some i implies that p = 2i which is a contradiction. Hence, p2 ∈/ Cp. Finally, as p2 ∈/ C1 and p2 ∈/ Cp, we consider

Cp2 ={p2,2p2,22p2, ...,2tp2−1p2},

where2tp2p2 ≡p2(modp3) which is equivalent to2tp2 ≡1(modp) and sotp2 =p−1 (follows from (4.3)). Now, we have

|C1|=p3−p2,

|Cp|=p2−p,

|Cp2|=p−1,

Chapter 4. Results and Discussions 25

and so

|C1|+|Cp|+|Cp2|+|{0}|=p3−p2+p2−p+p−1 + 1 =p3 =|Zp3|.

Suppose that x ∈ C1 ∩Cp. Then x ∈ C1 andx ∈ Cp which impliesx = 2j and x = 2kp for some integersj, k (w.l.o.g assume j ≥ k). It follows that2j = 2kpand then 2j−k = p, which is a contradiction as an odd primep cannot be even. Hence, C1∩Cp =∅.

Next, suppose thaty ∈C1∩Cp2. Theny ∈C1andy∈Cp2 which impliesy= 2j andy = 2kp2 for some integersj, k (w.l.o.g assumej ≥ k). It follows that2j = 2kp2 implies2j−k=p2, is a contradiction as the square of odd primepis odd and cannot be even. Hence,C1∩Cp2 =∅.

Finally, suppose that z ∈ Cp ∩Cp2. Then z ∈ Cp and z ∈ Cp2 which implies z = p2j and z = p22k for some integers j, k (w.l.o.g assume j ≥ k). It follows that p2j = p22k and it implies 2j−k = p since p 6= 0, is a contradiction. Hence, Cp∩Cp2 =∅.

Therefore, we can conclude thatZp3 =C1∪Cp∪Cp2 ∪ {0}andCi∩Cj =∅for alli, j ∈ {1, p, p2}. And hence,C1, Cp andCp2 are the required2-cyclotomic cosets modulop3.

Theorem 4.3. Letpbe an odd prime andn ≥2. Suppose2is a primitive root modulo pn. Then there are exactlynnonzero2-cyclotomic cosets modulopnwith

|C1|=pn−pn−1,

|Cp|=pn−1−pn−2, ...

|Cpn−1|=p−1.

Proof. Letpbe an odd prime and n ≥ 2. LetP(n)be the statement "Suppose 2is a primitive root modulopn. Then there are exactlynnonzero cylcotomic cosets modulo pn."

For the basis step, when n = 2, we shown that there are exactly2nonzero cyclo- tomic cosets modulop2by Theorem 4.1. Hence,P(2)is true.

Inductively, suppose P(k) is true for some k ≥ 2, that is, there are exactly k nonzero cyclotomic cosets modulopkprovided2is a primitive root modulopk. Hence,

whenn =k + 1, we suppose that2is a primitive root modulopk+1. FromP(k), we havek nonzero cyclotomic cosets modulopk, that isC1, Cp, Cp2, .... andCpk−1 and in total there arepk−1elements. When we increase the modulus frompk to pk+1, the same elements remain in the same cyclotomic cosets but the same cosets can now be filled with more elements fromZpk+1.

Suppose there are exactlyk nonzero cyclotomic cosets modulo pk+1. Then,C1 ∪ Cp∪Cp2∪...∪Cpk−1 =Zpk+1 ={1,2, ..., pk, pk+ 1, ..., pk+1−1}.Sincepk+ 1is not a multiple ofpso it is not in Cp, Cp2, ...,andCpk−1 and it is forced to be inC1. Same goes for other elements in Zpk+1 that is not a multiple ofp must be inC1. Then, the remaining elements like{..., pk+p, .., pk+p2, ..., pk+pk, ...}which are multiples ofp modulopk+1will be in their respective cyclotomic cosets modulopk+1. For example, pk+p2 ∈ Cp2 but not inCp because it is in the form of2jp2 instead of2ipfor some integersiandj.

However,pkis not in any of thesekcyclotomic cosets. Suppose we assume thatpk is in one of these cosets. Then,pk =pl2tfor some integersl andtwhere0≤ l < k, implies pk−l = 2t which is a contradiction. Hence, pk must be the smallest integer that is in the new cyclotomic coset modulo pk+1 that is Cpk. This contradicts the assumption that there are exactly k nonzero cyclotomic cosets modulopk+1. Hence, there are exactlyk+ 1nonzero cyclotomic cosets modulopk+1.

Hence,P(k+1)is true. By mathematical induction,P(n)is true for alln ≥2.

Theorem 4.4. Let pbe an odd prime. Suppose 2has order p−12 modulop and2 has order p(p−1)2 modulop2. Then there are exactly4distinct nonzero 2-cyclotomic cosets modulop2.

Proof. The cyclotomic coset modulop2 with coset representative1is C1 ={1,2,22, ...,2t1−1},

where2t1 ≡1(modp2). Since2has order p(p−1)2 modulop2, then we havet1 = p(p−1)2 and so|C1|= p(p−1)2 .

Next, for all x ∈ C1, x = 1 or x is even, we choose an odd prime q that is the smallest quadratic non-residue modulo pwhere q /∈ C1 andq < √

p+ 1. Thus, we next construct the second 2-cyclotomic coset modulo p2 with coset representative q,

Chapter 4. Results and Discussions 27

that is,

Cq ={q,2q,22q, ...,2tq−1q},

where2tqq ≡q(modp2). The condition2tqq ≡q(modp2) can be reduced to2tq ≡ 1 (modp2), which gives ustq = p(p−1)2 and also|Cq|= p(p−1)2 .

Next, sincep /∈C1andp /∈Cq, we consider

Cp ={p,2p,22p, ...,2tp−1p},

where2tpp ≡ p (modp2) which is equivalent to 2tp ≡ 1(modp). Since2has order

p−1

2 modulop, then we havetp = p−12 and so|Cp|= p−12 .

Finally, aspq /∈ C1 ∪Cq∪Cp, we construct the last cyclotomic coset modulo p2 with coset representativepq, that is,

Cpq ={pq,2pq,22pq, ...,2tpq−1pq},

where2tpqpq≡pq(modp2) which is equivalent to2tpqq ≡q(modp). Similarly, it can be reduced to2tpq ≡1(modp). Then we have thattpq = p−12 and so|Cpq|= p−12 . Now, we have

|C1|=|Cq|= p(p−1) 2 ,

and |Cp|=|Cpq|= p−1

2 ,

and clearly,|C1|+|Cq|+|Cp|+|Cpq|+|{0}| =|Zp2|. The proof that all cyclotomic cosets are mutually disjoint are similar to the previous theorems. Hence, C1, Cq, Cp andCpq are the required2-cyclotomic cosets modulop2.

Theorem 4.5. Letpbe an odd prime. Suppose2 has order p2(p−1)2 modulop3. Then there are exactly6distinct nonzero 2-cyclotomic cosets modulop3.

Proof. Given2has order p2(p−1)2 modulop3, then

2p2(p−1)2 ≡1(mod p3). (4.4)

Thus, by Euler’s Theorem together with the definition of order, we have

2p(p−1)2 ≡1(mod p2), (4.5)

and 2p−12 ≡1(mod p). (4.6)

The cyclotomic coset modulop3with coset representative1is C1 ={1,2,22, ...,2t1−1},

where2t1 ≡1(modp3). From above, we havet1 = p2(p−1)2 and so|C1|= p2(p−1)2 . Next, we choose an odd primeqthat is the smallest quadratic non-residue modulo pwhereq <√

p+ 1. Obviously,q /∈C1, so we construct Cq ={q,2q,22q, ...,2tq−1q},

where2tqq ≡ q (modp3) which can be reduced to2tq ≡ 1(modp3), which gives us tq = p2(p−1)2 and so|Cq|= p2(p−1)2 .

Moving forward, sincep /∈C1∪Cq, we consider the third cyclotomic coset modulo p3with coset representativep, that is,

Cp ={p,2p,22p, ...,2tp−1p},

where 2tpp ≡ p (mod p3) which is equivalent to2tp ≡ 1 (mod p2). Then, we have tp = p(p−1)2 and so|Cp|= p(p−1)2 (follows from (4.5)).

Similar to previous theorem, we considerpqwhich is not in any of the three cyclo- tomic cosets. We then construct

Cpq ={pq,2pq,22pq, ...,2tpq−1pq},

where 2tpqpq ≡ pq (mod p3) which is equivalent to 2tpqq ≡ q (mod p2). It can be reduced to2tpq ≡1(modp). Then we have thattpq = p(p−1)2 and so|Cpq|= p(p−1)2 .

Next, asp2 ∈/ C1∪Cq∪Cp∪Cpq, we consider

Cp2 ={p2,2p2,22p2, ...,2tp2−1p2},

where 2tp2p2 ≡ p2(mod p3) which is equivalent to 2tp2 ≡ 1(mod p) and so tp2 =

p−1

2 (follows from (4.6)). Finally, we consider p2q as it is also not in the other five cyclotomic cosets modulo p3 and hereby construct the cyclotomic coset modulo p3, that is,

Cp2q ={p2q,2p2q,22p2q, ...,2tp2q−1p2q},

where2tp2qp2q ≡ p2q(modp3) which is equivalent to 2tp2qq ≡ q(modp). Later, it is reduced to2tp2q ≡ 1(modp). Clearly, we see that tp2q = p−12 = |Cp2q|(follows from (4.6)).

Chapter 4. Results and Discussions 29

The sum of all six cyclotomic cosets with |{0}| gives the size of Zp3. The ver- ification of all cyclotomic cosets to be mutually disjoint sets can be done using the technique in previous theorems. Hence, the required 2-cyclotomic cosets modulo p3 areC1, Cq, Cp, Cpq, Cp2, andCp2q.

4-2 Construction of Cyclic Codes

In this section, we will illustrate the construction of[9, k, d]and[25, k, d]cyclic codes using Theorem 4.1 while for[49, k, d] cyclic codes, we are using Theorem4.4 from previous section. Throughout this whole section, we are dealing with binary cyclic codes.

4-2-1 Construction of [9, k, d]-Cyclic Codes

Now, we construct the cyclic codes withn = 9. Using Theorem4.1, we verified that2 is a primitive root modulo3. Hence, there are exactly two nonzero cyclotomic cosets modulo9. The following are the 2-cyclotomic cosets modulo9.

C0 ={0}, C1 ={1,2,4,8,7,5}andC3 ={3,6}.

To represent these cosets in term of group ring, we letΩ1 = P

s∈C1gs ∈ F[Z9] and Ω2 =P

r∈C3gr ∈F[Z9]. In term of group ring, the cyclotomic cosets ofF[Z9]are Ω0 =g0,

1 =g1+g2+g4+g8 +g7+g5, Ω2 =g3+g6.

We can see thatΩ20 = 12 = 1 = Ω0 and easily verify thatΩ21 = Ω1 andΩ22 = Ω2 as well as the union of differentΩare also idempotent. These idempotent are called the generating idempotent as each of them can generate a cyclic code.

There are two ways to find the dimension and minimum distance of a cyclic code from each generating idempotent. The first way is to form a matrix by cyclic shifting the generating idempotent until it is the same as the original generating idempotent.

Then, we perform Gaussian elimination to obtain the row echelon form and get the

dimensionk. The second method to obtain the dimension is by using Theorem3.26to find the generator polynomial.

After obtaining k, we find the weight for all combination of the generator polyno- mial or idempotent; or we can list down all the elements for the cyclic code to find the minimum distance d. It is preferable to use the second method as we can avoid handling large matrix which consumes more time and effort for latter cases.

Clearly, the generator polynomial forΩ0is1so <Ω0> is a [9,9,1]-cyclic code.

ForΩ1, the generator matrixGis found as follows:

1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1

R2→R2+R1

−−−−−−−→

1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

R3→R3+R2

−−−−−−−→

1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

= G 0

!

From above, we found that the dimension of the cyclic code is2. So the only four code- words are the three codewords in each row of the frist matrix and the zero codeword.

Clearly, the minimum distance is6. <Ω1> is a [9,2,6]-cyclic code.

Next, we find the generator polynomial for <Ω2> using Theorem3.26.

g(x) =gcd(g49−1, g3+g6) =gcd(g3+g6,1 +g3) = 1 +g3.

The dimension of the cyclic code is6and the minimum distance is2. Hence, <Ω2> is a[9,6,2]-cyclic code.

SinceΩ0+Ω1is also a generating idempotent, we have the corresponding generator polynomial.

g(x) =gcd(g49−1,1 +g1+g2+g4+g8+g7+g5)

=gcd(1 +g1+g2+g4 +g8+g7+g5, g3+g4+g6+g7)

=gcd(g3+g4+g6+g7,1 +g+g2)

=1 +g+g2.

The dimension of this code is7and the minimum distance is2. <Ω0+Ω1> is a [9,7,2]- cyclic code. Later, we found that <Ω0+ Ω2> is a [9,3,3]-cyclic code as1 +g3+g6 divides g9 −1completely so the generating idempotent is the generator polynomial itself.

Chapter 4. Results and Discussions 31

Next, we obtained the generator polynomial for <Ω1+ Ω2> by the following steps:

g(x) =gcd(g49−1, g1+g2+g3+g4 +g5+g6+g7+g8)

=gcd(g1+g2+g3+g4 +g5+g6+g7+g8,1 +g)

=1 +g.

Clearly, the dimension of the code is 9−1 = 8 while the minimum distance is 2.

Hence, <Ω1+ Ω2> is a [9,8,2]-cyclic code.

Finally, we have <Ω0+ Ω1+ Ω2>={000000000,111111111}which tells us that it is a [9,1,9]-binary cyclic code.

4-2-2 Construction of [25, k, d]-Cyclic Codes

Next, we consider the casep= 5. From Theorem4.1, we verified that2is a primitive root modulo5, so there are exactly two nonzero cyclotomic cosets modulo25. Hence, we letΩ1 = P

h∈C1gh ∈F[Z25]andΩ2 =P

k∈C5gk ∈ F[Z25]. Then, we see that all 2-cyclotomic cosets modulo25are as follows:

C0 ={0}, C5 ={5,10,20,15}and

C1 ={1,2,4,8,16,7,14,3,6,12,24,23,21,17,9,18,11,22,19,13}.

In term of group ring, the cyclotomic cosets ofF[Z25]are Ω0 =g0,

1 =g1+g2+g4+g8+g16+g7+g14+g3+g6 +g12+ g24+g23+g21+g17+g9+g18+g11+g22+g19+g13, Ω2 =g5+g10+g20+g15.

Using Theorem3.26, we find the generator polynomial with respect to<Ω0 >to be g(x) =gcd(Ω0, g25−1) =gcd(1, g25−1) = 1.

From Theorem3.21, this cyclic code has dimension 25. Clearly, the minimum distance here is 1as the minimum weight of all nonzero codewords for this cyclic code is 1.

Hence, we obtained a [25,25,1]-binary cyclic code.

Next, forΩ1, we perform Gaussian elimination on the matrix formed by the gener- ating idempotent to obtaink.

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

R3→R3+R2

R4→R4+R2

R5→R5+R2

−−−−−−−→

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

R1→R1+R5

R3→R3+R5

R4→R4+R5

−−−−−−−→

0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

R1→R1+R3

−−−−−−−→

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

R1↔R5

−−−−→

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

R1↔R2

R5→R5+R4

−−−−−−−→

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 .

From the row echelon form of the matrix, the dimension is4. Then we have24 = 16 codewords. We easily list down all the elements as follows:

<Ω1 >={0000000000000000000000000,1101111011110111101111011, 1110111101111011110111101,1111011110111101111011110,

Chapter 4. Results and Discussions 33

0111101111011110111101111,1011110111101111011110111, 1010010100101001010010100,0101001010010100101001010, 0010100101001010010100101,1001010010100101001010010, 0100101001010010100101001,1000110001100011000110001, 1100011000110001100011000,0110001100011000110001100, 0011000110001100011000110,0001100011000110001100011}.

From these codewords, we can see that the minimum distance is10. Hence,< Ω1 >

is a[25,4,10]-binary cyclic code.

SinceΩ2 is a generating idempotent, we have

g(x) =gcd(g25+ 1, g5+g10+g20+g15)

=gcd(g5+g10+g20+g15, g5+ 1)

=g5+ 1.

The corresponding cyclic code to <Ω2> is a [25,20,2]-binary cyclic code. Similarly, Ω0+ Ω1 is a generating idempotent, we have the following generator polynomial.

g(x) =gcd(g25+ 1,1 +g1 +g2+g4+g8+g16+g7+g14+g3+g6+ g12+g24+g23+g21+g17+g9+g18+g11+g22+g19+g13)

=gcd(1 +g1+g2 +g4+g8+g16+g7+g14+g3+g6+g12+ g24+g23+g21+g17+g9+g18+g11+g22+g19+g13, g5+g6 +g10+g11+g15+g16+g20+g21)

=gcd(g5+g6+g10+g11+g15+g16+g20+g21,1 +g+g2+g3+g4)

=1 +g+g2+g3+g4.

Clearly, the dimension is 21. Minimum distance can be difficult to find by listing all the elements as there are 221 of them. However, we can observe from the generator polynomial. By addinggig(x)andgi+1g(x)for anyi, we still get the minimum weight of2. For example,g(x) +g·g(x) = 1 +g5. Hence, <Ω0+ Ω1> is a[25,21,2]-binary cyclic code.

SinceΩ0 + Ω2is a generating idempotent, we have

g(x) =gcd(g25+ 1,1 +g5+g10+g20+g15) = 1 +g5+g10+g20+g15.

Clearly, the dimension is 5 and we can list all the elements as follows:

<Ω0+ Ω2 >={0000000000000000000000000,1000010000100001000010000, 0100001000010000100001000,0010000100001000010000100, 0001000010000100001000010,0000100001000010000100001, 0011000110001100011000110,0001100011000110001100011, 1000110001100011000110001,1100011000110001100011000, 0110001100011000110001100,0100101001010010100101001, 1010010100101001010010100,0101001010010100101001010, 0010100101001010010100101,1001010010100101001010010, 1110111101111011110111101,1111011110111101111011110, 0111101111011110111101111,1011110111101111011110111, 1101111011110111101111011,0011100111001110011100111, 1001110011100111001110011,1100111001110011100111001, 1110011100111001110011100,0111001110011100111001110, 0101101011010110101101011,1010110101101011010110101, 1101011010110101101011010,0110101101011010110101101, 1011010110101101011010110,1111111111111111111111111}.

Hence, <Ω0+ Ω2> is a[25,5,5]-binary cyclic code. Next, we haveΩ1+ Ω2 which is also a generating idempotent, we have the following

g(x) =gcd(g25+ 1, g1 +g2+g4+g8+g16+g7+g14+g3+g6+g12+g24+ g23+g21+g17+g9+g18+g11+g22+g19+g13+g5+g10+g20+g15)

=gcd(g1+g2 +g4+g8+g16+g7+g14+g3+g6+g12+g24+g23+g21+ g17+g9+g18+g11+g22+g19+g13+g5+g10+g20+g15,1 +g)

=1 +g.

We see that k = 24. Again, listing all the elements by hand will be very tedious.

However, we can observe from the generator polynomial and we see that the minimum distance is2. Hence, <Ω1 + Ω2> is a[25,24,2]-binary cyclic code. Finally, we have

<Ω0+ Ω1+ Ω2 >={0000000000000000000000000,1111111111111111111111111}

which tells us that it is a [25,1,25]-binary cyclic code.

Chapter 4. Results and Discussions 35

4-2-3 Construction of [49, k, d]-Cyclic Codes

From Theorem 4.4, we let Ω1 = P

s∈C1gs ∈ F[Zp2], Ω2 = P

r∈Cqgr ∈ F[Zp2], Ω3 = P

t∈Cpgt ∈ F[Zp2] andΩ4 = P

v∈Cpqgv ∈ F[Zp2]. Consider the case p = 7.

Then, we see that all2-cyclotomic cosets modulo49are

C0 ={0}, C1 ={1,2,4,8,16,32,15,30,11,22,44,39,29,9,18,36,23,46,43,37,25}, C3 ={3,6,12,24,48,47,45,41,33,17,34,19,38,27,5,10,20,40,31,13,26},

C7 ={7,14,28}andC21 ={21,42,35}.

In term of group ring, the cyclotomic cosets ofF[Z49]are Ω0 =g0,

1 =g1+g2+g4+g8+g16+g32+g15+g30+g11+g22+g44+ g39+g29+g9 +g18+g36+g23+g46+g43+g37+g25, Ω2 =g3+g6+g12+g24+g48+g47+g45+g41+g33+g17+g34+

g19+g38+g27+g5+g10+g20+g40+g31+g13+g26, Ω3 =g7+g14+g28andΩ4 =g21+g42+g35.

We can easily verify that all these cyclotomic cosets in term of group ring are idempo- tent and since they generate a cyclic code, they are known as the generating idempotent.

Clearly, forΩ0 = 1, we have a[49,49,1]-binary cyclic code.

Next, we have the following generator polynomial for<Ω1 >.

g(x) =gcd(g49−1, g1+g2 +g4+g8+g16+g32+g15+g30+g11+g22+ g44+g39+g29+g9 +g18+g36+g23+g46+g43+g37+g25)

=gcd(g1+g2+g4+g8+g16+g32+g15+g30+g11+g22+g44+g39+ g29+g9+g18+g36+g23+g46+g43+g37+g25,1 +g+g3+g7+ g8+g10+g14+g15+g17+g21+g22+g24+g28+g29+g31+ g35+g36+g38+g42+g43+g45)

=gcd(1 +g+g3+g7 +g8+g10+g14+g15+g17+g21+g22+g24+g28+ g29+g31+g35+g36+g38+g42+g43+g45,0)

=1 +g+g3+g7+g8+g10+g14+g15+g17+g21+g22+g24+g28+ g29+g31+g35+g36+g38+g42+g43+g45.

From above, we see thatk = 4and we have16codewords as follows:

<1>=

{0000000000000000000000000000000000000000000000000,1111111111111111111111111111111111111111111111111, 1101000110100011010001101000110100011010001101000,0110100011010001101000110100011010001101000110100, 0011010001101000110100011010001101000110100011010,0001101000110100011010001101000110100011010001101, 1000110100011010001101000110100011010001101000110,0100011010001101000110100011010001101000110100011, 1010001101000110100011010001101000110100011010001,0101110010111001011100101110010111001011100101110, 0010111001011100101110010111001011100101110010111,1001011100101110010111001011100101110010111001011, 1100101110010111001011100101110010111001011100101,1110010111001011100101110010111001011100101110010, 0111001011100101110010111001011100101110010111001,1011100101110010111001011100101110010111001011100}.

From above, we found that the minimum distance is 21. Hence, we obtained a [49,4,21]-binary cyclic code.

The generator matrix based on the generating idempotentΩ2 is as follows and we performed Gaussian Elimination on it.

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1

R2→R2+R1

R3→R3+R1

−−−−−−−→

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1

R3→R3+R2

R5→R5+R2

−−−−−−−→

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1

R4→R4+R3

R6→R6+R3

R7→R7+R5

−−−−−−−→

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R5→R5+R4

−−−−−−−→

1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

=G2 0

.

Chapter 4. Results and Discussions 37

Once again, the dimension is 4so there are 16 codewords. If we perform cyclic shift on the first two rows, we will get14different codewords. Then we include 0 and 1, we will have exactly16codewords. Hence, from the matrix G2, d = 21. Again, we obtained a[49,4,21]-binary cyclic code.

The generator polynomial for <Ω3> using Theorem3.26is as follows:

g(x) =gcd(g49−1, g7+g14+g28)

=gcd(g7 +g14+g28,1 +g7+g21)

=gcd(1 +g7+g21,0)

=1 +g7+g21.

Based on g(x), the Hamming distance is at least 3. So, we have a[49,28,3]-binary cyclic code.

The generator polynomial for <Ω4> using Theorem3.26is as follows:

g(x) =gcd(g49−1, g21+g35+g42)

=gcd(g21+g35+g42,1 +g21+g28+g35)

=gcd(1 +g21+g28+g35, g7+g21+g28)

=gcd(g7+g21+g28,1 +g14+g21)

=1 +g14+g21.

Based ong(x), the minimum distance is3. So, we have a[49,28,3]-binary cyclic code.

The generator polynomial for <Ω0+ Ω1> using Theorem3.26is as follows:

g(x) =gcd(g49−1,1 +g1 +g2+g4+g8+g16+g32+g15+g30+g11+g22+ g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25)

=gcd(1 +g1 +g2+g4+g8+g16+g32+g15+g30+g11+g22+g44+g39+ g29+g9+g18+g36+g23+g46+g43+g37+g25, g7 +g8+g10+g14+g15+ g17+g21+g22+g24+g28+g29+g31+g35+g36+g38+g42+g43+g45)

=gcd(g7+g8+g10+g14+g15+g17+g21+g22+g24+g28+g29+ g31+g35+g36+g38+g42+g43+g45,1 +g+g2+g4)

=1 +g+g2+g4.

Based ong(x), the dimension is45while the minimum distance is4. Hence, we have a[49,45,4]-binary cyclic code.

The generator polynomial for <Ω0+ Ω2> using Theorem3.26is as follows:

g(x) =gcd(g49−1,1 +g3 +g6+g12+g24+g48+g47+g45+g41+g33+g17+ g34+g19+g38+g27+g5+g10+g20+g40+g31+g13+g26)

=gcd(1 +g3 +g6+g12+g24+g48+g47+g45+g41+g33+g17+g34+g19+ g38+g27+g5+g10+g20+g40+g31+g13+g26, g+g3+g4+g5+g7+ g10+g11+g12+g14+g17+g18+g19+g21+g24+g25+g26+g28+g31+ g32+g33+g35+g38+g39+g40+g42+g45+g46+g47)

=gcd(g+g3+g4 +g5+g7+g10+g11+g12+g14+g17+g18+g19+g21+ g24+g25+g26+g28+g31+g32+g33+g35+g38+g39+g40+g42+g45+ g46+g47,1 +g2+g3+g4+g8+g10+g11+g15+g17+g18+g22+g24+ g25+g29+g31+g32+g36+g38+g39+g43+g45+g46)

=gcd(1 +g2 +g3+g4+g8+g10+g11+g15+g17+g18+g22+g24+g25+ g29+g31+g32+g36+g38+g39+g43+g45+g46, g7+g9+g10+g14+g16+ g17+g21+g23+g24+g28+g30+g31+g35+g37+g38+g42+g44+g45)

=gcd(g7+g9+g10+g14+g16+g17+g21+g23+g24+g28+g30+g31+ g35+g37+g38+g42+g44+g45,1 +g2+g3+g4)

=1 +g2+g3+g4.

Based on the generator polynomial, the cyclic code has a dimension of 45and Ham- ming distance at least 4. So,<Ω0+ Ω2 >is a[49,45,4]-binary cyclic code.

0+ Ω3 = 1 +g7+g14+g28dividesg49−1completely. So, the dimension is21 andd = 4. Hence, <Ω0+ Ω3> is a [49,21,4]-binary cyclic code.

Next, the generator polynomial for <Ω0+ Ω4> is g(x) =gcd(g49−1,1 +g21+g35+g42)

=gcd(1 +g21+g35+g42, g7+g21+g28+g35)

=gcd(g7+g21+g28+g35,1 +g14+g21+g28)

=1 +g14+g21+g28.

Similarly, we obtained a [49,21,4]-binary cyclic code.

Chapter 4. Results and Discussions 39

Next, the generator polynomial for <Ω1+ Ω2> is as follows:

g(x)

=gcd(g49−1, g1+g2+g4+g8+g16+g32+g15+g30+g11+g22+g44+ +g39+g29+g9+g18+g36+g23+g46+g43+g37+g25+g3+g5+g6+ g10+g12+g13+g17+g19+g20+g24+g26+g27+g31+g33+g34+ g38+g40+g41+g45+g47+g48)

=gcd(g1+g2+g3+g4+g5 +g6+g8+g9+g10+g11+g12+g13+g15+g16+ g17+g18+g19+g20+g22+g23+g24+g25+g26+g27+g29+g30+g31+g32

+g33+g34+g36+g37+g38+g39+g40+g41+g43+g44+g45+g46+g47+ g48,1 +g+g7+g8+g14+g15+g21+g22+g28+g29+g35+g36+g42+g43)

=gcd(1 +g+g7 +g8+g14+g15+g21+g22+g28+g29+g35+g36+g42+g43,0)

=1 +g+g7+g8+g14+g15+g21+g22+g28+g29+g35+g36+g42+g43. The dimension of the code is 6 so there are 26 codewords in this cyclic code. The following are all64codewords.

<1+ Ω2>

={0000000000000000000000000000000000000000000000000,1100000110000011000001100000110000011000001100000, 0110000011000001100000110000011000001100000110000,0011000001100000110000011000001100000110000011000, 0001100000110000011000001100000110000011000001100,0000110000011000001100000110000011000001100000110, 0000011000001100000110000011000001100000110000011,1000001100000110000011000001100000110000011000001, 0010100001010000101000010100001010000101000010100,0001010000101000010100001010000101000010100001010, 0000101000010100001010000101000010100001010000101,1000010100001010000101000010100001010000101000010, 0100001010000101000010100001010000101000010100001,1010000101000010100001010000101000010100001010000, 0101000010100001010000101000010100001010000101000,0100010010001001000100100010010001001000100100010, 0010001001000100100010010001001000100100010010001,1001000100100010010001001000100100010010001001000, 0100100010010001001000100100010010001001000100100,0010010001001000100100010010001001000100100010010, 0001001000100100010010001001000100100010010001001,1000100100010010001001000100100010010001001000100, 1110010111001011100101110010111001011100101110010,0111001011100101110010111001011100101110010111001, 1011100101110010111001011100101110010111001011100,0101110010111001011100101110010111001011100101110, 0010111001011100101110010111001011100101110010111,1001011100101110010111001011100101110010111001011, 1100101110010111001011100101110010111001011100101,1110100111010011101001110100111010011101001110100, 0111010011101001110100111010011101001110100111010,0011101001110100111010011101001110100111010011101, 1001110100111010011101001110100111010011101001110,0100111010011101001110100111010011101001110100111, 1010011101001110100111010011101001110100111010011,1101001110100111010011101001110100111010011101001, 0011110001111000111100011110001111000111100011110,0001111000111100011110001111000111100011110001111, 1000111100011110001111000111100011110001111000111,1100011110001111000111100011110001111000111100011,

1110001111000111100011110001111000111100011110001,1111000111100011110001111000111100011110001111000, 0111100011110001111000111100011110001111000111100,1101100110110011011001101100110110011011001101100, 0110110011011001101100110110011011001101100110110,0011011001101100110110011011001101100110110011011, 1001101100110110011011001101100110110011011001101,1100110110011011001101100110110011011001101100110, 0110011011001101100110110011011001101100110110011,1011001101100110110011011001101100110110011011001, 1010110101011010101101010110101011010101101010110,0101011010101101010110101011010101101010110101011, 1010101101010110101011010101101010110101011010101,1101010110101011010101101010110101011010101101010, 0110101011010101101010110101011010101101010110101,1011010101101010110101011010101101010110101011010, 0101101010110101011010101101010110101011010101101,1111101111110111111011111101111110111111011111101, 1111110111111011111101111110111111011111101111110,0111111011111101111110111111011111101111110111111, 1011111101111110111111011111101111110111111011111,1101111110111111011111101111110111111011111101111, 1110111111011111101111110111111011111101111110111,1111011111101111110111111011111101111110111111011}.

Based on the list of elements above, the minimum distance is14. <Ω1 + Ω2> is a [49,6,14]-binary cyclic code.

We constructed the generator polynomial for <Ω1 + Ω3> as follows:

g(x) =gcd(g49−1, g1 +g2+g4+g7+g8+g14+g16+g32+g15+g30+g11+ g22+g28+g44+g39+g29+g9 +g18+g36+g23+g46+g43+g37+g25)

=gcd(g1+g2+g4+g7+g8 +g14+g16+g32+g15+g30+g11+g22+ g28+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25, 1 +g+g3+g21+g22+g24+g35+g36+g38+g42+g43+g45)

=gcd(1 +g+g3 +g21+g22+g24+g35+g36+g38+g42+g43+g45, g7+g8+g9+g11+g14+g15+g16+g18+g28+g29+g30+g32)

=gcd(g7+g8+g9+g11+g14+g15+g16+g18+g28+g29+g30+g32, 1 +g+g3+g14+g15+g17+g21+g22+g24+g28+g29+g31)

=gcd(1 +g+g3 +g14+g15+g17+g21+g22+g24+g28+g29+g31, g+g2 +g4+g7+g8+g9+g11+g14+g22+g23+g25+g28)

=gcd(g+g2+g4+g7+g8+g9+g11+g14+g22+g23+g25+g28, 1 +g+g2+g4+g7 +g8+g9+g11+g21+g22+g23+g25)

=gcd(1 +g+g2 +g4+g7+g8+g9+g11+g21+g22+g23+g25,0)

=1 +g+g2+g4+g7 +g8+g9+g11+g21+g22+g23+g25.

From the degree of the generator polynomial, the dimension is 24and the Hamming distance should be at least12. <Ω1+ Ω3> is a[49,24,12]-binary cyclic code.

Chapter 4. Results and Discussions 41

Next, the <Ω1+ Ω4> has the following generator polynomial:

g(x) =gcd(g49−1, g1 +g2+g4+g8+g16+g32+g15+g30+g11+g21+g22+ g35+g42+g44+g39+g29+g9 +g18+g36+g23+g46+g43+g37+g25)

=gcd(g1+g2+g4+g8+g16+g32+g15+g30+g11+g21+g22+g35+ g42+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25, 1 +g+g3+g7+g8 +g10+g14+g15+g17+g28+g29+g31)

=gcd(1 +g+g3 +g7+g8+g10+g14+g15+g17+g28+g29+g31, g+g2 +g4+g7+g15+g16+g18+g21+g22+g23+g25+g28)

=gcd(g+g2+g4+g7+g15+g16+g18+g21+g22+g23+g25+g28, 1 +g+g2+g4+g14+g15+g16+g18+g21+g22+g23+g25)

=gcd(1 +g+g2 +g4+g14+g15+g16+g18+g21+g22+g23+g25,0)

=1 +g+g2+g4+g14+g15+g16+g18+g21+g22+g23+g25.

From the degree of the generator polynomial, the dimension is 24and the Hamming distance should be at least12. <Ω1+ Ω4> is a[49,24,12]-binary cyclic code.

Next, we haveΩ3 + Ω4 = g7 +g14+g21+g28+g35+g42. We constructed the generator polynomial as follows:

g(x) = gcd(g49−1, g7+g14+g21+g28+g35+g42)

=gcd(g7 +g14+g21+g28+g35+g42,1 +g7)

=gcd(1 +g7,0)

= 1 +g7.

Clearly,<Ω3+ Ω4> is a [49,42,2]-binary cyclic code.

By addingΩ0 to the previous generating idempotent, we have1 +g7+g14+g21+ g28+g35+g42which is a factor ofg49−1as we found that

(1 +g7+g14+g21+g28+g35+g42)(1 +g4) = g49−1.

Hence, <Ω0+ Ω3+ Ω4> is a[49,7,7]-binary cyclic code.

We found that < Ω2 + Ω4 > is a [49,24,12]-binary cyclic code based on the

generator polynomial with degree25and weight12found below.

g(x) =gcd(g49−1, g3+g5+g6+g10+g12+g13+g17+g19+g20+g21+g24+ g26+g27+g31+g33+g34+g35+g38+g40+g41+g42+g45+g47+g48)

=gcd(g3+g5+g6+g10+g12+g13+g17+g19+g20+g21+g24+g26+ g27+g31+g33+g34+g35+g38+g40+g41+g42+g45+g47+g48,1 +g3

+g4+g5+g7+g10+g11+g12+g14+g17+g18+g19+g22+g24+g25+ g26+g28+g31+g32+g33+g36+g38+g39+g40+g43+g45+g46+g47)

=gcd(1 +g3 +g4+g5+g7+g10+g11+g12+g14+g17+g18+g19+g22+ g24+g25+g26+g28+g31+g32+g33+g36+g38+g39+g40+g43+g45+ g46+g47, g+g3+g4+g8+g10+g11+g15+g17+g18+g21+g23+g24+ g25+g29+g31+g32+g35+g37+g38+g39+g42+g44+g45+g46)

=gcd(g+g3+g4 +g8+g10+g11+g15+g17+g18+g21+g23+g24+g25+ g29+g31+g32+g35+g37+g38+g39+g42+g44+g45+g46,

1 +g2+g3+g7+g9+g10+g14+g16+g17+g28+g30+g31)

=gcd(1 +g2 +g3+g7+g9+g10+g14+g16+g17+g28+g30+g31, g+g3+ g4 +g7+g8+g9+g15+g17+g18+g21+g23+g24+g25+g28+g29+g30)

=gcd(g+g3+g4 +g7+g8+g9+g15+g17+g18+g21+g23+g24+g25+ g28+g29+g30,1 +g3 +g4+g5+g7+g8+g14+g17+g18+g19+g22+ g24+g25+g26+g28+g29)

=gcd(1 +g3 +g4+g5+g7+g8+g14+g17+g18+g19+g22+g24+g25+g26 +g28+g29, g3+g5+g6+g7+g17+g19+g20+g21+g24+g26+g27+g28)

=gcd(g3+g5+g6+g7+g17+g19+g20+g21+g24+g26+g27+g28, 1 +g3+g5+g6+g14+g17+g19+g20+g21+g24+g26+g27)

=gcd(1 +g3 +g5+g6+g14+g17+g19+g20+g21+g24+g26+g27, g+g3+g4+g5+g15+g17+g18+g19+g22+g24+g25+g26)

=gcd(g+g3+g4 +g5+g15+g17+g18+g19+g22+g24+g25+g26, 1 +g2+g3+g4+g14+g16+g17+g18+g21+g23+g24+g25)

=gcd(1 +g2 +g3+g4+g14+g16+g17+g18+g21+g23+g24+g25,0)

=1 +g2+g3+g4+g14+g16+g17+g18+g21+g23+g24+g25.

Chapter 4. Results and Discussions 43

Next, we constructed the generator polynomial based on the two generating idem- potentΩ2+ Ω3 and the result is as follows:

g(x) =gcd(g49−1, g3+g5+g6+g7+g10+g12+g13+g14+g17+g19+g20+ g24+g26+g27+g28+g31+g33+g34+g38+g40+g41+g45+g47+g48)

=gcd(g3+g5+g6+g7+g10+g12+g13+g14+g17+g19+g20+g24+g26 +g27+g28+g31+g33+g34+g38+g40+g41+g45+g47+g48,1 +g3+ g4 +g5+g8+g10+g11+g12+g15+g17+g18+g19+g21+g24+g25+ g26+g29+g31+g32+g33+g35+g38+g39+g40+g42+g45+g46+g47)

=gcd(1 +g3 +g4+g5+g8+g10+g11+g12+g15+g17+g18+g19+g21+ g24+g25+g26+g29+g31+g32+g33+g35+g38+g39+g40+g42+g45+ g46+g47, g+g3+g4+g7+g9+g10+g11+g14+g16+g17+g18+g22+ g24+g25+g28+g30+g31+g32+g36+g38+g39+g43+g45+g46)

=gcd(g+g3+g4 +g7+g9+g10+g11+g14+g16+g17+g18+g22+g24 +g25+g28+g30+g31+g32+g36+g38+g39+g43+g45+g46,1 +g2+ g3 +g21+g23+g24+g35+g37+g38+g42+g44+g45)

=gcd(1 +g2 +g3+g21+g23+g24+g35+g37+g38+g42+g44+g45, g7 +g9+g10+g11+g14+g16+g17+g18+g28+g30+g31+g32)

=gcd(g7+g9+g10+g11+g14+g16+g17+g18+g28+g30+g31+g32, 1 +g2+g3+g14+g16+g17+g21+g23+g24+g28+g30+g31)

=gcd(1 +g2 +g3+g14+g16+g17+g21+g23+g24+g28+g30+g31, g+g3+g4+g7+g9 +g10+g11+g14+g15+g16+g22+g24+g25+ g28+g29+g30)

=gcd(g+g3+g4 +g7+g9+g10+g11+g14+g15+g16+g22+g24+g25+ g28+g29+g30,1 +g3 +g4+g5+g8+g10+g11+g12+g14+g15+g21+ g24+g25+g26+g28+g29)

=gcd(1 +g3 +g4+g5+g8+g10+g11+g12+g14+g15+g21+g24+ g25+g26+g28+g29, g3+g5+g6+g7+g10+g12+g13+g14+g24+ g26+g27+g28)

=gcd(g3+g5+g6+g7+g10+g12+g13+g14+g24+g26+g27+g28, 1 +g3+g5 +g6+g7+g10+g12+g13+g21+g24+g26+g27)

=gcd(1 +g3+g5+g6+g7+g10+g12+g13+g21+g24+g26+g27, g+g3+g4+g5 +g8+g10+g11+g12+g22+g24+g25+g26)

=gcd(g+g3 +g4+g5+g8+g10+g11+g12+g22+g24+g25+g26, 1 +g2+g3 +g4+g7+g9+g10+g11+g21+g23+g24+g25)

=gcd(1 +g2+g3+g4+g7+g9+g10+g11+g21+g23+g24+g25,0)

=1 +g2+g3 +g4+g7+g9+g10+g11+g21+g23+g24+g25.

From theg(x), the dimension of the cyclic code is24and the minimum distance is12.

Hence,<Ω2+ Ω3 >is a[49,24,12]-binary cyclic code.

For <Ω0+ Ω1+ Ω2>, the generator polynomial is as follows:

g(x)

=gcd(g49−1,1 +g1+g2+g4+g8+g16+g32+g15+g30+g11+g22+g44+ +g39+g29+g9+g18+g36+g23+g46+g43+g37+g25+g3+g5 +g6+ g10+g12+g13+g17+g19+g20+g24+g26+g27+g31+g33+g34+g38+ g40+g41+g45+g47+g48)

=gcd(1 +g1+g2+g3+g4 +g5+g6+g8+g9+g10+g11+g12+g13+g15+ g16+g17+g18+g19+g20+g22+g23+g24+g25+g26+g27+g29+g30+g31

+g32+g33+g34+g36+g37+g38+g39+g40+g41+g43+g44+g45+g46+ g47+g48, g7+g8+g14+g15+g21+g22+g28+g29+g35+g36+g42+g43)

=gcd(g7+g8 +g14+g15+g21+g22+g28+g29+g35+g36+g42+g43, 1 +g +g2+g3+g4+g5+g6)

=gcd(1 +g+g2+g3+g4+g5+g6,0)

=1 +g +g2+g3+g4+g5+g6.

Clearly, the dimension is 43. It can be found that the minimum distance is 2. For example, we can useg(x) +g·g(x) = 1 +g7. Hence, the corresponding cyclic code is a[49,43,2]-cyclic code.

Chapter 4. Results and Discussions 45

For <Ω0+ Ω1+ Ω3>, the generator polynomial is as follows:

g(x) =gcd(g49−1,1 +g1 +g2+g4+g7+g8+g14+g16+g32+g15+ g30+g11+g22+g28+g44+g39+g29+g9+g18+g36+g23+ g46+g43+g37+g25)

=gcd(1 +g1+g2+g4+g7+g8+g14+g16+g32+g15+g30+g11+ g22+g28+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+ g25, g21+g22+g24+g35+g36+g38+g42+g43+g45)

=gcd(g21+g22+g24+g35+g36+g38+g42+g43+g45,1 +g+g2 +g4 +g7+g8+g9+g11+g14+g15+g16+g18+g28+g29+g30+g32)

=gcd(1 +g+g2+g4+g7+g8+g9+g11+g14+g15+g16+g18+g28 +g29+g30+g32, g7+g8 +g10+g21+g22+g24+g28+g29+g31)

=gcd(g7+g8+g10+g21+g22+g24+g28+g29+g31,1 +g+g2+ g4 +g7+g14+g15+g16+g18+g22+g23+g25+g28)

=gcd(1 +g+g2+g4+g7+g14+g15+g16+g18+g22+g23+g25+g28, g+g2+g4+g15+g16+g18+g22+g23+g25)

=gcd(g+g2+g4 +g15+g16+g18+g22+g23+g25, 1 +g+g3+g14+g15+g17+g21+g22+g24)

=gcd(1 +g+g3+g14+g15+g17+g21+g22+g24,0)

=1 +g+g3+g14+g15+g17+g21+g22+g24.

Clearly, the dimension is 25. The Hamming distance is at least 9 by looking at the generator polynomial. Hence, <Ω0+ Ω1+ Ω3> is[49,25,9]-cyclic code.

Most of the calculations were done by hand but it became harder to perform poly- nomial division as the number of elements increased, so we used a Matlab code to help us calculate the remainder for the division of two polynomials as follows:

[q,r]=gfdeconv(g,u,2)

gis the numerator whileuis the denominator, the third parameter is the division over which finite field. By default, it is 2(binary). Then, it will produce two result :quotient and remainder. Since we just need the remainder, we just display the remainder. Ba-

sically, to get the results for all idempotent in one run, we loop the function multiple times using a for loop.

For <Ω0+ Ω1+ Ω4>, the generator polynomial is as follows:

g(x)

=gcd(g49−1,1 +g1+g2+g4+g8+g16+g32+g15+g30+g11+g21+g22+ g35+g42+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25)

=gcd(1 +g1+g2+g4+g8 +g16+g32+g15+g30+g11+g21+g22+g35+ g42+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25,

g7+g8+g10+g14+g15+g17+g28+g29+g31)

=gcd(g7+g8+g10+g14+g15+g17+g28+g29+g31,1 +g+g2+g4+g8+ g9+g11+g14+g21+g22+g23+g25+g28)

=gcd(1 +g+g2+g4+g8+g9+g11+g14+g21+g22+g23+g25+g28, g+g2+g4+g8 +g9+g11+g22+g23+g25)

=gcd(g+g2 +g4+g8+g9+g11+g22+g23+g25, 1 +g+g3+g7+g8+g10+g21+g22+g24)

=gcd(1 +g+g3+g7+g8+g10+g21+g22+g24,0)

=1 +g+g3+g7+g8+g10+g21+g22+g24.

The dimension of the cyclic code is49−24 = 25. From the generator polynomial, the Hamming distance should be at least9. Hence, the code is a [49,25,9]-binary cyclic code.

Next, we found that < Ω0 + Ω2 + Ω3 > is a [49,25,9]-binary cyclic code by constructing the generator polynomial as follows:

g(x)

=gcd(g49−1,1 +g3+g5+g6+g7+g10+g12+g13+g14+g17+g19+g20 +g24+g26+g27+g28+g31+g33+g34+g38+g40+g41+g45+g47+g48)

=gcd(1 +g3+g5+g6 +g7+g10+g12+g13+g14+g17+g19+g20+g24+ g26+g27+g28+g31+g33+g34+g38+g40+g41+g45+g47+g48, g+g3 +g4+g5+g8+g10+g11+g12+g15+g17+g18+g19+g21+g24+g25+ g26+g29+g31+g32+g33+g35+g38+g39+g40+g42+g45+g46+g47)

Chapter 4. Results and Discussions 47

=gcd(g+g3+g4+g5+g8+g10+g11+g12+g15+g17+g18+g19+g21+ g24+g25+g26+g29+g31+g32+g33+g35+g38+g39+g40+g42+g45+ g46+g47,1 +g2+g3+g4+g7+g9+g10+g11+g14+g16+g17+g18+ g22+g24+g25+g28+g30+g31+g32+g36+g38+g39+g43+g45+g46)

=gcd(1 +g2+g3+g4+g7+g9 +g10+g11+g14+g16+g17+g18+g22+ g24+g25+g28+g30+g31+g32+g36+g38+g39+g43+g45+g46, g21+ g23+g24+g35+g37+g38+g42+g44+g45)

=gcd(g21+g23+g24+g35+g37+g38+g42+g44+g45,1 +g2+g3+g4+ g7+g9+g10+g11+g14+g16+g17+g18+g28+g30+g31+g32)

=gcd(1 +g2+g3+g4+g7+g9 +g10+g11+g14+g16+g17+g18+g28+ g30+g31+g32, g7+g9+g10+g21+g23+g24+g28+g30+g31)

=gcd(g7+g9+g10+g21+g23+g24+g28+g30+g31,1 +g2+g3+g4+ g7+g8+g9+g14+g16+g17+g18+g22+g24+g25+g28+g29+g30)

=gcd(1 +g2+g3+g4+g7+g8 +g9+g14+g16+g17+g18+g22+g24+ g25+g28+g29+g30, g+g3+g4+g5+g7+g8+g15+g17+g18+g19+ g21+g24+g25+g26+g28+g29)

=gcd(g+g3+g4+g5+g7+g8+g15+g17+g18+g19+g21+g24+g25+ g26+g28+g29,1 +g3+g5+g6+g7+g14+g17+g19+g20+g24+g26+ g27+g28)

=gcd(1 +g3+g5+g6+g7+g14+g17+g19+g20+g24+g26+g27+g28, g3+g5+g6+g17+g19+g20+g24+g26+g27)

=gcd(g3+g5+g6 +g17+g19+g20+g24+g26+g27,1 +g3+g4 +g5+ g14+g17+g18+g19+g21+g24+g25+g26)

=gcd(1 +g3+g4+g5+g14+g17+g18+g19+g21+g24+g25+g26, g+g3+g4+g15+g17+g18+g22+g24+g25)

=gcd(g+g3+g4+g15+g17+g18+g22+g24+g25, 1 +g2+g3+g14+g16+g17+g21+g23+g24)

=gcd(1 +g2+g3+g14+g16+g17+g21+g23+g24,0)

=1 +g2+g3+g14+g16+g17+g21+g23+g24.

Similarly, we found that<Ω0+Ω2+Ω4 >is a[49,25,9]-binary cyclic code by finding the generator polynomial as follows:

g(x)

=gcd(g49−1,1 +g3+g5+g6+g10+g12+g13+g17+g19+g20+g21+g24 +g26+g27+g31+g33+g34+g35+g38+g40+g41+g42+g45+g47+g48)

=gcd(1 +g3+g5+g6 +g10+g12+g13+g17+g19+g20+g21+g24+g26+ g27+g31+g33+g34+g35+g38+g40+g41+g42+g45+g47+g48, g+g3+ g4+g5+g7+g10+g11+g12+g14+g17+g18+g19+g22+g24+g25+ g26+g28+g31+g32+g33+g36+g38+g39+g40+g43+g45+g46+g47)

=gcd(g +g3+g4+g5+g7+g10+g11+g12+g14+g17+g18+g19+g22+ g24+g25+g26+g28+g31+g32+g33+g36+g38+g39+g40+g43+g45+ g46+g47,1 +g2+g3+g4 +g8+g10+g11+g15+g17+g18+g21+g23+ g24+g25+g29+g31+g32+g35+g37+g38+g39+g42+g44+g45+g46)

=gcd(1 +g2+g3+g4 +g8+g10+g11+g15+g17+g18+g21+g23+g24+ g25+g29+g31+g32+g35+g37+g38+g39+g42+g44+g45+g46, g7+g9+g10+g14+g16+g17+g28+g30+g31)

=gcd(g7+g9+g10+g14+g16+g17+g28+g30+g31,1 +g2+g3+g4+ g8+g10+g11+g14+g15+g16+g21+g23+g24+g25+g28+g29+g30)

=gcd(1 +g2+g3+g4 +g8+g10+g11+g14+g15+g16+g21+g23+g24+ g25+g28+g29+g30, g+g3+g4+g5+g7+g10+g11+g12+g14+g15+ g22+g24+g25+g26+g28+g29)

=gcd(g +g3+g4+g5+g7+g10+g11+g12+g14+g15+g22+g24+g25+ g26+g28+g29,1 +g3+g5+g6+g10+g12+g13+g14+g21+g24+ g26+g27+g28)

=gcd(1 +g3+g5+g6 +g10+g12+g13+g14+g21+g24+g26+g27+g28, g3+g5+g6+g10+g12+g13+g24+g26+g27)

=gcd(g3+g5+g6+g10+g12+g13+g24+g26+g27,

1 +g3+g4+g5+g7+g10+g11+g12+g21+g24+g25+g26)

Chapter 4. Results and Discussions 49

=gcd(1 +g3+g4+g5+g7+g10+g11+g12+g21+g24+g25+g26, g+g3+g4+g8+g10+g11+g22+g24+g25)

=gcd(g+g3+g4+g8+g10+g11+g22+g24+g25,1 +g2 +g3+g7+ g9+g10+g21+g23+g24)

=gcd(1 +g2+g3+g7+g9+g10+g21+g23+g24,0)

=1 +g2+g3+g7+g9+g10+g21+g23+g24.

For<Ω1+ Ω2+ Ω3 >, the generator polynomial of this code is as follows:

g(x) =gcd(g49−1, g1+g2+g4+g7+g8+g14+g16+g32+g15+g30+g11+ g22+g28+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25+ g3 +g5+g6+g10+g12+g13+g17+g19+g20+g24+g26+g27+g31+ g33+g34+g38+g40+g41+g45+g47+g48)

=gcd(g1+g2+g3+g4+g5+g6+g7+g8 +g9+g10+g11+g12+g13+g14 +g15+g16+g17+g18+g19+g20+g22+g23+g24+g25+g26+g27+ g28+g29+g30+g31+g32+g33+g34+g36+g37+g38+g39+g40+g41+ g43+g44+g45+g46+g47+g48,1 +g+g21+g22+g35+g36+g42+g43)

=gcd(1 +g+g21+g22+g35+g36+g42+g43, g7+g8+g9+g10+g11+ g12+g13+g14+g15+g16+g17+g18+g19+g20+g28+g29+g30+ g31+g32+g33+g34)

=gcd(g7+g8+g9+g10+g11+g12+g13+g14+g15+g16+g17+g18+ g19+g20+g28+g29+g30+g31+g32+g33+g34,1 +g+g14+g15+ g21+g22+g28+g29)

=gcd(1 +g+g14+g15+g21+g22+g28+g29, g+g2+g3+g4+g5+g6+g7+ g8 +g9+g10+g11+g12+g13+g14+g22+g23+g24+g25+g26+g27+g28)

=gcd(g+g2+g3 +g4+g5+g6+g7+g8+g9+g10+g11+g12+g13+g14+ g22+g23+g24+g25+g26+g27+g28,1 +g+g2+g3 +g4+g5+g6+g7+ g8 +g9+g10+g11+g12+g13+g21+g22+g23+g24+g25+g26+g27)

=1 +g+g2+g3+g4+g5+g6+g7 +g8+g9+g10+g11+g12+g13+ g21+g22+g23+g24+g25+g26+g27.

Clearly, the dimension of the code is 22. If we take g(x) + g · g(x), we will get 1 +g14+g21+g28which is actually the generator polynomial of <Ω0+ Ω4>. Hence, the minimum distance is4. So, <Ω1+ Ω2+ Ω3> is a[49,22,4]-binary cyclic code.

Next, we have <Ω1+ Ω2+ Ω4> as a generating idempotent. By Theorem3.26, the generator polynomial is related as follows:

g(x) =gcd(g49−1, g1+g2+g4+g8+g16+g32+g15+g30+g11+g21+g22+ g35+g42+g44+g39+g29+g9+g18+g36+g23+g46+g43+g37+g25+ g3+g5+g6+g10+g12+g13+g17+g19+g20+g24+g26+g27+g31+ g33+g34+g38+g40+g41+g45+g47+g48)

=gcd(g1+g2+g3+g4+g5+g6+g8+g9+g10+g11+g12+g13+g15+ g16+g17+g18+g19+g20+g21+g22+g23+g24+g25+g26+g27+ g29+g30+g31+g32+g33+g34+g35+g36+g37+g38+g39+g40+ g41+g42+g43+g44+g45+g46+g47+g48,1 +g+g7+g8+g14+ g15+g28+g29)

=gcd(1 +g+g7+g8+g14+g15+g28+g29, g+g2+g3+g4+g5+g6+ g7+g15+g16+g17+g18+g19+g20+g21+g22+g23+g24+g25+ g26+g27+g28)

=gcd(g+g2+g3+g4+g5+g6+g7+g15+g16+g17+g18+g19+g20+ g21+g22+g23+g24+g25+g26+g27+g28,1 +g+g2+g3+g4+g5+ g6+g14+g15+g16+g17+g18+g19+g20+g21+g22+g23+g24+ g25+g26+g27)

=gcd(1 +g+g2+g3+g4+g5+g6+g14+g15+g16+g17+g18+g19+ g20+g21+g22+g23+g24+g25+g26+g27,0)

=1 +g+g2 +g3+g4+g5+g6+g14+g15+g16+g17+g18+g19+g20+ g21+g22+g23+g24+g25+g26+g27.

Clearly, the dimension is22. If we sum upg(x)andg·g(x), we get1 +g7+g14+g28 again. Hence, <Ω1 + Ω2+ Ω4> is a [49,22,4]-binary cyclic code.

Dokumen terkait