CONCLUSION AND RECOMMENDATION
As for the conclusion, we could find that the fuzzy logic can gives the most favorable result. This is because the IAE is very small, the settling time settle quickly and less oscillation. The target of the concentration is 0.1287 lbmol/ft3 with time delay of 3 second.
So based on the result, the fuzzy logic concept has proven to us that it can be an effective solution to a complex control problem. Thus it is an alternative to the use of another controller. Yet, the author believes that it can brings more benefits in the development of industrial process control system.
Usually, the fuzzy logic concept is still not a perfect in process control. It is just an improvement to old conventional controller. So, there is a several recommendations can be made;
1. By studying and review back the fuzzy logic concept’s weakness.
2. Develop new concept in which does not require a complex equation model and do the comparison with the fuzzy logic
3. All the data must be based on the experimentation to ensure that there is no slight error that can be made.
24
REFERENCES
Aguilar-López, R., & Manca, D. (2009). Process Modeling & Control: A Special Issue of Chemical Product & Process Modeling. Chemical Product and Process Modeling, 4(2)
Chang, W. (2013). Nonlinear CSTR control system design using an artificial bee colony algorithm. Simulation Modelling Practice and Theory, 3(1) 1-9.
Czeczot, J. (2006). Balance-based adaptive control methodology and its application to the non-isothermal CSTR. Chemical Engineering and Processing: Process Intensification, 45(5) 359-371.
Galluzzo, M., & Cosenza, B. (2011). Control of a non-isothermal continuous stirred tank reactor by a feedback–feedforward structure using type-2 fuzzy logic controllers. Information Sciences, 181(17) 3535-3550.
González, B., Valdez, F., Melin, P., & Prado-Arechiga, G. (2015). Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Applied Soft Computing, 37(1) 245-254.
Hassoun, M. (1996). Solving Problems in Environmental Engineering and Geosciences with Artificial Neural Networks [Books. IEEE Trans. Neural Netw, 7(4) 1053.
He, J., & Song, T. (2014). A Bio-Inspired Algorithm for the Fleet Size and Mix Vehicle Routing Problem. Journal of Computational and Theoretical Nanoscience, 11(10) 2085-2090.
Heredia-Molinero, M., Sánchez-Prieto, J., Briongos, J., & Palancar, M. (2014).
Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point. Journal of Process Control, 24(7) 1023-1037.
Hirota, K., & Pedrycz, W. (1996). Directional fuzzy clustering and its application to fuzzy modelling. Fuzzy Sets and Systems, 80(3) 315-326.
25
Jang, J. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3) 665-685.
Jayakumar, N., Thomas, M., & Sahu, J. (2014). Experimental and modeling of a non- isothermal CSTR to find out parameter regions and conditions causing input multiplicity for acid catalyzed hydrolysis of acetic anhydride. Chemometrics and Intelligent Laboratory Systems, 135(1) 213-222.
Jie Zhang. (2005). Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks. IEEE Trans. Fuzzy Syst, 13(4) 417-427.
Ketata, R., De Geest, D., & Titli, A. (1995). Fuzzy controller: design, evaluation, parallel and hierarchial combination with a PID controller. Fuzzy Sets and Systems, 71(1) 113-129.
King, P., & Mamdani, E. (1977). The application of fuzzy control systems to industrial processes. Automatica, 13(3) 235-242.
Kuure-Kinsey, M., Cutright, R., & Bequette, B. W. (2006). Computationally Efficient Neural Predictive Control Based on a Feedforward Architecture. Industrial &
Engineering Chemistry Research, 45(25) 8575-8582.
Mohd Ali, J., Hussain, M., Tade, M. O., & Zhang, J. (2015). Artificial Intelligence techniques applied as estimator in chemical process systems – A literature survey. Expert Systems with Applications, 42(14) 5915-5931.
Nikravesh, M., Farell, A., & Stanford, T. (2000). Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC). Chemical Engineering Journal, 76(1) 1-16.
O. S. Hanafy, T., & Metwally, M. K. (2014). Dynamic Modeling Process of Neuro Fuzzy System to Control the Inverted Pendulum System. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12(8)
Paya, B., Esat, I., & Badi, M. (1997). Artificial Neural Network based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Pre- processor. Mechanical Systems and Signal Processing, 11(5) 751-765.
26
Salehi, S., & Shahrokhi, M. (2008). Adaptive fuzzy approach for H∞ temperature tracking control of continuous stirred tank reactors. Control Engineering Practice, 16(9) 1101-1108.
Sarma, P. (2001). Multivariable gain-scheduled fuzzy logic control of an exothermic reactor.Engineering Applications of Artificial Intelligence, 14(4) 457-471.
Scacchi, W. (2000). Understanding software process redesign using modeling, analysis and simulation. Softw. Process: Improve. Pract, 5(2‐3) 183.
Shareef, H., Mutlag, A. H., & Mohamed, A. (2015). A novel approach for fuzzy logic PV inverter controller optimization using lightning search algorithm. Neurocomputing, 168(1) 435-453.
Solmaz, S., & Başlamışlı, S. Ç. (2011). A nonlinear sideslip observer design methodology for automotive vehicles based on a rational tire model. The International Journal of Advanced Manufacturing Technology, 60(5-8) 765- 775.
Soukkou, A., Khellaf, A., Leulmi, S., & Boudeghdegh, K. (2008). Optimal control of a CSTR process. Brazilian Journal of Chemical Engineering, 25(4) 799-812.
Suja Malar, R. M., & Thyagarajan, T. (2009). Modelling of continuous stirred tank reactor using artificial intelligence techniques. Int. j. simul. model, 8(3) 145- 155.
Vrančić, Lieslehto, & Strmčnik. (2001). Designing a MIMO PI controller using the multiple integration approach. Process Control and Quality, 11(6): 455-468.
Yazdani, A. M., Movahed, M. A., & Mahmoudzadeh, S. (2013). Controller Design for Non-Isothermal Reactor Based on Imperialist Competitive Algorithm. IJCTE, 478-483.
Çam, E., & Kocaarslan, İ. (2005). A fuzzy gain scheduling PI controller application for an interconnected electrical power system. Electric Power Systems Research, 73(3) 267-274.
27
Čerka, P., Grigienė, J., & Sirbikytė, G. (2015). Liability for damages caused by artificial intelligence. Computer Law & Security Review, 31(3) 376-389.
Švandová, Z., Kotora, M., Markoš, J., & Jelemenský, Ľ. (2006). Dynamic behaviour of a CSTR with reactive distillation. Chemical Engineering Journal, 119(2-3) 113-120.
28
APPENDICES
APPENDICES A
To calculate the transfer function, based on the values given from the graph:
Process variable; PV = 0.1287
Manipulated variable, MV = 1 (step size, final value-initial value) from simulation Time delay, 𝜏𝑑= 3 sec
The unstable process gain, Kp =
𝐾𝑝 =
𝑃𝑉𝑀𝑉
=
0.12871 Process time constant, 𝜏𝑐
𝑥 = 0.632(𝑃𝑉) = 0.632(0.1287) = 0.08134~0.08
Then, find the time that reach to the concentration 0.08, so the 𝜏𝑐 = 3.2-3.0 =0.2 sec, minus with the time delay, 3 sec,
So, for the transfer function; Transfer Function (TF)
= 𝐾𝑝
𝜏𝑐 𝑠+1 𝑒 −
𝜏𝑑𝑡
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0 1 2 3 4 5 6 7 8 9 10
Concentration (Ibmol/ft3)
Time (sec)
CSTR NON-ISOTHERMAL ( CONCENTRATION )
29
Substitute, the value inside the transfer function, TF =
0.1287
0.2 𝑠+1 𝑒 −
3𝑡
Mathematical Coding in m.files
Overall Simulink design with Fuzzy Logic controller
30 APPENDICES B
B.1 ADAPTIVE PID CONTROLLER (WITHOUT DISTURBANCE) Data of the Adaptive PID Controller without disturbance
TIME CONC TIME CONC TIME CONC TIME CONC TIME CONC
0 0 1.4743 0 5 0.0102 5 0.0102 94.3149 0.1282 0.0002 0 1.9274 0 5 0.0102 5 0.0102 94.752 0.1282 0.0012 0 2.5385 0 5 0.0102 5 0.0102 95.1787 0.1281 0.0062 0 2.9056 0 5 0.0102 5 0.0102 95.7497 0.1282 0.0314 0 3.2727 0.0021 5 0.0102 5 0.0102 96.3207 0.1282 0.117 0 3.4141 0.0034 5 0.0102 5 0.0102 97.0816 0.1282 0.2028 0 3.5555 0.0044 5 0.0102 5 0.0102 97.5349 0.1282 0.3143 0 3.786 0.0058 5 0.0102 5 0.0102 97.9882 0.1282 0.4525 0 3.9887 0.0067 5 0.0102 5 0.0102 98.5308 0.1282 0.6237 0 4.215 0.0075 5 0.0102 5 0.0102 99.0258 0.1282 0.8398 0 4.4505 0.0083 5 0.0102 5 0.0102 99.6031 0.1282 1.1263 0 4.6784 0.0091 5 0.0102 5 0.0102 100 0.1283
31
B.2 ADAPTIVE PID CONTROLLER (WITH DISTURBANCE) Data of the Adaptive PID Controller with disturbance
TIME CONC TIME CONC TIME CONC TIME CONC TIME CONC
0 0 1.9274 0 5 0.0102 8.3843 0.0962 94.1351 0.1361 0.0002 0 2.5385 0 5.3751 0.026 8.6729 0.0997 94.6601 0.136 0.0012 0 2.9056 0 5.7501 0.0398 8.9548 0.1028 95.1258 0.1361 0.0062 0 3.2727 0.0021 6.0719 0.0502 9.4145 0.1073 95.5241 0.1361 0.0314 0 3.4141 0.0034 6.3196 0.0572 9.6661 0.1097 96.0356 0.1361 0.117 0 3.5555 0.0044 6.4812 0.0611 9.9177 0.1118 96.6337 0.1361 0.2028 0 3.786 0.0058 6.6428 0.0648 10.1537 0.1135 97.1032 0.1361 0.3143 0 3.9887 0.0067 6.8661 0.0698 10.3626 0.1148 97.5727 0.1361 0.4525 0 4.215 0.0075 7.0701 0.0742 10.6074 0.1162 98.0331 0.1361 0.6237 0 4.4505 0.0083 7.2583 0.078 11.0164 0.1185 98.4641 0.1361 0.8398 0 4.6784 0.0091 7.4897 0.0825 11.3662 0.1202 98.8851 0.1361 1.1263 0 5 0.0102 7.8181 0.0881 11.7054 0.1217 99.4417 0.1361
32
B.3 FUZZY LOGIC CONTROLLER (WITHOUT DISTURBANCE Data of the Fuzzy logic Controller without disturbance
TIME CONC TIME CONC TIME CONC TIME CONC TIME CONC
0 0 1.9107 0 5 0.1283 5 0.1283 94.2595 0.1271 0.0002 0 2.5156 0 5 0.1283 5 0.1283 94.7235 0.1271 0.0012 0 2.8931 0 5 0.1283 5 0.1283 95.1876 0.1271 0.0062 0 3.1905 0.0785 5 0.1283 5 0.1283 95.6711 0.1271 0.0314 0 3.3257 0.1026 5 0.1283 5 0.1283 96.1592 0.1271 0.1124 0 3.461 0.1152 5 0.1283 5 0.1283 96.5796 0.1271 0.1965 0 3.6194 0.1225 5 0.1283 5 0.1283 97.1281 0.1271 0.3074 0 3.7683 0.1252 5 0.1283 5 0.1283 97.7011 0.1271 0.445 0 3.9135 0.1268 5 0.1283 5 0.1283 98.1047 0.1271 0.6159 0 4.145 0.1279 5 0.1283 5 0.1283 98.5083 0.1271 0.8319 0 4.3765 0.1281 5 0.1283 5 0.1283 98.9653 0.1271 1.1162 0 4.5899 0.1283 5 0.1283 5 0.1283 100 0.1271