• OPERATING SUPPLY VOLT AGE UP TO 46 V
• TOTAL DC CURRENT UP TO 4 A
• LOW SATURATION VOLT AGE
• OVERTEMPERATURE PROTECTION
• LOGICAL "0" INPUT VOLT AGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
DESCRIPTION
The L298 is an integrated monolithic circuit in a 15- lead Multiwatt and PowerS020 packages. It is a high voltage, high current dual fuR-bridge driver de- signed to accept standard TIL logic revels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to enable or disable the device independently of the in- put signals. The emitters of the lower transistors of each bridge are connected together and the corre- sponding external terminal can be used for the con- BLOCK DIAGRAM
OOTt OUTl
L298
l298
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter
Vs Power Supply Vss logic Supply Voltage Vf,Ven Input and Enable Voltage
lo Peak Output Current (each Channel) -Non Repetitive (t = 100~s)
-Repetitive (80% on-20% off; loc = 10ms) -DC Operation
Vsens Sensing Voltage
Ptot Total Power Dissipation (T =e = 75"C)
Top Junction Operating Temperature Tstg, Ti Storage and Juncttorr Temperature
PIN CONNECTIONS (top view)
_,r:b._ 14 -qT 13
12 11
ultiwatt15
10 9
a
7 6 5 4 3 2
L
TABCONNECTEDTOPrNaGND 1
Sense A 2
N.C. 3
Out1 4
0Y5/N24aA
20 19 18 17
Out2 5 PowerS0211 16
Vs 6 15
Input 1 7 14
Enable A a u
input2
•
12GND 10 11
095/N23IJ
THERMAL DATA
Symbol Parameter
Rur j-case Thermal Resistance Junction-case Max.
Rthj-amb Thermal Resistance Junction-ambient Max.
('} Mounted on aluminum substrate 2/13
Value 50
7 -0.3to 7
3 2.5
2 -1to 2.3
25 -25 to 130 -4E!to 150
CURRENT SENSING B OUTPUT 4
OUTPUT 3 INPUT 4 ENABLE B INPUT 3
LOGIC SUPPLY VOLTAGE Vss GND
INPUT2 ENABLE A INPUT 1
SUPPLY VOLTAGE V5 OUTPUT2 OUTPUT 1
CURRENT SENSING A
GND
SenseB
NC Out4 Out3
!nput4 EnabteB input 3-
vss
GNtJ
-
PowerS021l lllultiwalt 15
- 3
t3
n
35Unit
v v v
A A A
v
w
"C 'C
Unot 'CIW
oc~N
L298
PIN FUNCTIONS (refer to the block diagr.lm)
MW.15 PawerSO Name Function
1;15 2;19 Sense A; Sense 8 Between this pin and ground is connected the sense resistor to control the current of the load.
-
--
2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored at pin 1.
4 6 Vs Supply Voltage for the Power Output Stages.
A non~inductive 1 OOnF capacitor must be connected between this pin and ground.
5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.
- --
6;11 8;14 Enable A; Enable B TTL Compatible Enable Input the L state disables the bridge A (enable A) and/or the bridge B (enable B).
8 1,10,11,20 GND Ground. -·
9 12 vss Supply Voltage for the Logic Blocks A 100nF capacitor must be connected between this pin and ground.
10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.
-
13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load connected between these two pins is monitored at pin '15.
- 3;18 N.C. Nut Connected
--
ELECTRICAL CHARACTERISTICS (Vs = 42V; Vss = 5V, T; = 25°C; unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
Vs Supply Voltage (pin4) Operative Condition VrH +2.5 46 v
Vss Logic Supply Voltage (pin 9) 4.5 5 7 v
Is Quiescent Supply Current (pin 4) Ven =H; IL =0 V,=L 13 22 mA
Vi::::H 50 70 mA
Yen= L V,=X 4 mA
Iss Quiescent Current from Vss (pin 9) Ven = H; IL =0 Vr=L 24 36 mA
v,=H 7 12 mA
Ven = L Vi=X 6 mA
ViL Input Low Voltage -0.3 1.5 v
(pins 5, 7, 10, 12)
viH Input High Voltage 2.3 VSS v
(pins 5, 7, 10, 12)
hL Low Voltage Input Current v,=L -10 ~~A
(pins 5, 7, 10, 12)
1.., High Voltage Input Current Vi= H 5 Vss -0.6V 30 100 ~IA
(pins 5, 7, 10, 12)
Ven = L Enable Low Voltage (pins &, 11) -0.3 1.5 v
Ven- H Enable High Vo~age (pins 6, 11) 2.3 Vss v
fen-L Low Voltage Enabfe Current (pins 6, 11)
Ven - l -10 ;LA
loo = H High Voltage Enable Current V~ = H 5 Vss -0.6V 30 1 0 v
(pins 6, 11)
VcEsat{H) Source Saturation Voltage lc = 1A 0.95 1.35 1.7
l
vlc=2A 2 2.7 v
VcEsat[L) Sink Saturation Voltage I,= 1A (5) 0.85 12 1.6
f v
lc=2A (5) 1.7 2.3
' v
L298
ELECTRICAL CHARACTERISTICS (conlinuedj
Symbol Pam meter Test Conditions Min. Typ. II/I ax.
T1 (V;) Source Current Turn-off Delay 0.5 V; to 0.9 lc (2); (4) 1.5 T, (V;) Source Current Fall Time 0.9 lc to 0.1
r,
(2); (4) 0.2:T3 (V,) Source Current Turn-on Delay 0.5
v,
to 0.1 lc (2); (4) 2 T4 (Vi) Source Current Rise Time 0.11, to0.9 lc (2); (4) 0.7 Ts (Vi) Sink Current Tum-off Delay 0.5v,
to 0.9 lc (3); (4) 07 T 6 (V,) Sink Current Fall Time 0.9 ic to 0.11, (3); (4) 0.2o T?(V,) Sink Current Turn-on Delay 0.5v,
to 0.9 lc (3); (4) 1.6Ts (V,) Sink Current Rise Time 0.1 lc to 0.91c (3); (4) 0.2:
fc (V,) Commutation Frequency lc = 2A 25 40
T1 (V,) Source Current Turn-off Delay 0.5 V80 to 0.9 lc (2); (4) 3
T2 (Veo) Source Current Fall Time 0.9 lc to 0.1 lc (2); (4) 1
T3 (Ve,J Source Current Turn-on Delay 0.5Voc.toO:llc (2); (4) Q}
T4(V,) Source Current Rise Time 0.11, to 0.91, (2); (4) 0.4
T s (Veo) Sink Current Tum-off Delay 0.5 Vee to 0.9 lc (3); (4) 2.2 Ts (Vee) Sink Current Fall Time Cl.9 lc to 0.1 lc (3); (4) 0.35 T,(Veo) Sink Current Tum-on Delay 0.5 Veo to 0.9 lc (3); (4) 0.25 T a (Ven) Sink Current Rise. Time 0.1 :, to 0.9 lc (3); (4) O.i
1} !}Sensing voltage can be -i \1 forts 50 psec; in steady state Vscm rnin 2-0.5 V.
2) Seeftg. 2.
3) See fig. 4.
4) The load must be a pure resistor.
Figure 1 : Typical Saturation Voltage vs. Output Current.
Figure 2: Switching Times Test Circuits.
T
1.6
1.1
0.4
0
4/13
•• 6418
>
t--:-·- Ys::42¥
I
V,.. :SV H
v
Lv v
...-::: ~
0.4 0.8 l.l t.G 2.0 1.4 !0(A) - ' For INPUT Switching, set EN = H For ENABLE Switching, set IN = H
OOT
Unit!
~s
"
.us ps ps -- ,us
}IS
ps p.s KHz
ps flS ps ps ps ps
~s
~s
Figure 3 : Source Current Delay Times vs. Input or Enable SWitching.
.. ---~ --
---7
\
10*1. - ~----·- -
,---;)
Tl T2 T3 T4
Ven· (4V)
, 5()•t~
,---If
Figure 4 : Switching Times Test Circuits.
More ; For fNPUT Switchmg:, set EN =-H For ENABlE 5wiciTil1g, set IN= L
IN~
ENAIILE
~
Yss.sv V:,=42V
Rl
r---~4 OUT!
ILC?
15... ,.
l298
~
I
I
S-S853/2
L298
Figure 5 : Sink Current Delay Times vs. Input 0 VEnable SWitching.
lma•t2A)~----~~---~~--- 9()'1.· - - - - - - - - --~
lO"J. - -
---~~----
---JT5 T6 T7 Tl
---\
lmax{2A) 90'1.-
10'1.·
--~ : v "'--- ---\ -_-- -:· :: ~ ~
--~--- 1
T1 T6
(4Y}
50"'1. - - - -
"\
s--106:67
Figure 6 : Bidirectional DC Motor Control .
....
&'OnF
J: "' ~
03;...n_ ., ,.
-'- _ ... LJ~ Inputs
Ven =H C=H;O=L
<
•
C:L;D:Hl ,. " ,.
ur·'ss
Ven,;:;: L C=D C=X:D=X~~:1r-
ltZ l.293N ]2onF L= Low H =Hig-h"
....
TO cotnROL _____. CJRcutT
" ~ _r;
I fs
In TCl: 04: r.A. fAST I'IECOVEA.'t aot)E. t'rr ~2froas.)t
....
~-~8~712I
6113
Function Forward Reverse Fast fvlotor Stop Free Running Motor Stop X= Don't 8am
L298
Figure 7: For higher currents, outputs can be paralleled. Take care to parallel channel1 with channel 4 and channel 2 with channel 3.
Vs Vss
EMABLE 6
INJ 5 O!!l"!
IN 2 oun.
II
10
IZ
•
APPLICATION INFORMATION {Refer to the block diagram}
i .1. POWER OUTPUT STAGE Each input must be connected to the source of the The L298 integrates two poweroutputstages(A; B).
The power output stage is a bridge configuration and its outputs can drive an inductive load in com- mon or differenzial mode, depending on the state of the inputs. The current that flows through the load comes out from the bridge at the sense output : an external resistor (RsA; Rss.) allows to detect the in- tensity of this current.
1.2.1NPUT STAGE
Each bridge is driven by means of four gates the in- put of which are ln1 ; ln2 ; EnA and ln3 ; ln4 ; En B.
The In inputs set the bridge slate when The En input is high; a low state of the En input inhibits the bridge.
All the inputs are TTL compatible.
2. SUGGESTIONS
A non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. When the large ca- pacitor of the power supply is too far from the IC, a second smaller one must be foreseen near the L298.
driving signals by means of a very short path.
Turn-On and Turn-Off: BeforetoTum-ONtheSup- ply Voltage and before to Turn ~OFF, the Enable in- put must be driven to the Low state.
3. APPLICATIONS
Fig 6 shows a bidirectional DC motor control Sche- matic Diagram for which only one bridge is needed.
The external bridge of diodes D1 to D4 is made by four fast recovery elements (irr ,; 200 nsec) that must be chosen of a VF as low as possible at the worst case of the load current
The sense output voltage can be used to control the current amplitude by chopping the inputs, or to pro- vide overcurrent protection by switching low the en- able input.
The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must never be overcome.
When the repetitive peak current needed from the load is higher than 2 Amps, a paralleled configura- tion can be chosen (See Fig. 7).
L298
This solution can drive until3 Amps In DC operation and until 3.5 Amps of a repetitive peak current.
On Fig 8 it is shown the driving of a two phase bipolar stepper motor; the needed signals to drive the in- puts of the L298 are generated, in this example, from the IC L297.
Fig 9 shows an example of P.C.B. designed for the application of Fig 8.
Fig 1 0 shows a second two phase bipolar stepper motor control circuit where the rurrent is oontroUed by the I. C. L6506.
Figure 8 : Two Phase Bipolar Stepper Motor Circuit.
This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.
Rt
••
'~
HnF :I:
... ±'' :::t
!OOnFGNO
CWiffW
CLOCK
lffllt
R£ill
OfA8lE '~re-f
CONTROL
Rs1 = Rs, = 0.5Q
D1 io D8 = 2 A Fast diodes
8/13
05C
l
..
a._17 4 5
•• •
B 119 1 c
"
L297
"'
• n tl"' ' "''" "
..
• iNii2..
n' 3 " 14
f I SENSEI
SENSEI
HOM£
·~
{ VFS 1.2 V@ I= 2A trr s 2DO ns
,. .
c==~~
·~"F II CJ~
01 1)2 Ill"'
• •
~ t11 ~'
I1
L298N tl" Q-1
.,. n
' " ... .. • "'' "'
...
I'.,, ""
.
'-. -
5- 5646!4L298
Figure 9: Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale}.
···~·--·
0
9 ( (
(,tiD Vs Ot 0?
Figure 10: Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Contro~er L6506.
su :LIIBnF
r
35U'":.'
li)t.ll: EN. A
! :b..! ..
ilE5£T - 4
,.
u 9'
9 2
{- • ~
'"""'
- B,
• L298r! •
"' ..
INPUTS _
, •
" " "
-
-•
l6596 H B~
' "' c:: -· ' " "
B- "
"'
~- ,.
·"'
'
.L 9"'
IIS<HS£
...
c:; :.. ...
L298
DIM. mm
MIN. TYP.
A 8
c
D 1
E 0.49 F 0.6&
G 1.02 1.27 G1 17.53 17.78 H1 19.6
H2
L 21.9 22.2 L1 21.7 22.1 L2 17.65 L3 17.25 17.5 L4 10.3 10.7 L7 2.65 M 4.25 4.55 M1 4.63 5.08
s 1.9 S1 1.9 Dia1 3.65
A
-
......
r--
L - -
~
I L -
M1 M
10113
incll MAX. MIN. TYP.
5 2.65
1.6
0.039 0.55 0.019 0.75 0.026 1.52 0 ()40 0.050 18.03 0.690 0.700
0.772 20.2
22.5 0.862 0.874 22.5 0.854 0.870 18.1 0.695 17.75 0.679 1}689
10.9 0.406 0.421 2.9 0.104 4.85 0.167 0.179 5.53 0.182 0.200
2.6 0.075 2.6 0.075 3.85 0.144
c _,
~ ::::;
a
...
B
MAX.
0.1(}7 0.104 0.063
0.022 0.030 0.060 0.710
0.795 0.886 0.886 0.713 IJ.899 0.429 0.114 0.191 0.218 0.102 0.102 0.152
/
Dial
)o
OUTLINE AND MECHANICAL DATA