• Tidak ada hasil yang ditemukan

Given that results obtain from the simulation-based project are extremely subjective due to the input data which comes from the user themselves, it must be verified through actual lab experiment before it can be applied in the real-world.

Thus, for those who will continue this work, it is recommended to conduct a lab experiment and compare the obtained results with this research. From there, a further refinement can then be done on the simulation parameter itself and increase its relative reliability for future applications in industry.

66 APPENDIX

Theoretical and Numerical results of critical buckling load for steel grade S275

67

Theoretical and Numerical results of critical buckling load for steel grade S275

68

Theoretical and Numerical results of critical buckling load for steel grade S275

69

Theoretical and Numerical results of critical buckling load for steel grade S275

70

Theoretical and Numerical results of critical buckling load for steel grade S275

71

Theoretical and Numerical results of critical buckling load for steel grade S275

72

Theoretical and Numerical results of critical buckling load for steel grade S355

73

Theoretical and Numerical results of critical buckling load for steel grade S355

74

Theoretical and Numerical results of critical buckling load for steel grade S355

75

Theoretical and Numerical results of critical buckling load for steel grade S355

76

Theoretical and Numerical results of critical buckling load for steel grade S355

77

Theoretical and Numerical results of critical buckling load for steel grade S355

78

Theoretical and Numerical results of critical buckling load for steel grade S460

79

Theoretical and Numerical results of critical buckling load for steel grade S460

80

Theoretical and Numerical results of critical buckling load for steel grade S460

81

Theoretical and Numerical results of critical buckling load for steel grade S460

82

Theoretical and Numerical results of critical buckling load for steel grade S460

83

Theoretical and Numerical results of critical buckling load for steel grade S460

84

FEA results of RHS column with increasing in opening numbers

85

FEA results of RHS column with increasing in opening numbers

86

FEA results of RHS column with increasing in opening numbers

87

FEA results of RHS column with increasing in opening numbers

88

FEA results of RHS column with increasing in opening numbers

89

FEA results of RHS column with increasing in opening numbers

90

BIBLIOGRAPHY

AL-Shareef, N. H. (Mar. 2018). Impact of Openings on the Buckling of RHS Steel Column. JUBES, vol. 26, pp. 209 – 226

Ahmed, S., & Ashraf, M. (2017). Numerical investigation on buckling resistance of stainless-steel hollow members. Journal of Constructional Steel Research, 136, 193-203. doi:https://doi.org/10.1016/j.jcsr.2017.05.017

Batista, E. d. M. (2009). Local–global buckling interaction procedures for the design of cold- formed columns: Effective width and direct method integrated approach. Thin-Walled Structures, 47(11), 1218-1231.

doi:https://doi.org/10.1016/j.tws.2009.04.004

Degée, H., Detzel, A., & Kuhlmann, U. (2008). Interaction of global and local buckling in welded RHS compression members. Journal of Constructional Steel Research, 64(7), 755-765. doi:https://doi.org/10.1016/j.jcsr.2008.01.032

Ellobody, E. (2007). Buckling analysis of high strength stainless steel stiffened and unstiffened slender hollow section columns. Journal of Constructional Steel Research, 63(2), 145-155. doi:https://doi.org/10.1016/j.jcsr.2006.04.007

Gardner, L., Fieber, A., & Macorini, L. (2019). Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures, 17, 2-20.

doi:https://doi.org/10.1016/j.istruc.2019.01.012

Gardner, L., & Nethercot, D. A. (2004). Experiments on stainless steel hollow sections—

Part 2: Member behaviour of columns and beams. Journal of Constructional Steel Research, 60(9), 1319-1332. doi:https://doi.org/10.1016/j.jcsr.2003.11.007

Gardner, L., & Nethercot, D. A. (2004). Numerical Modeling of Stainless-Steel Structural Components—A Consistent Approach. Journal of Structural Engineering, 130(10), 1586-1601. doi:doi:10.1061/(ASCE)0733-9445(2004)130:10(1586) Gardner, L., & Young, B. (2019). Finite element modelling and design of stainless steel

SHS and RHS beam-columns under moment gradients. Thin-Walled Structures, 134, 220-232. doi:10.1016/j.tws.2018.10.004

Gonçalves, R., & Camotim, D. (2004). GBT local and global buckling analysis of aluminum and stainless-steel columns. Computers & Structures, 82(17), 1473- 1484. doi:https://doi.org/10.1016/j.compstruc.2004.03.043

91

Hradil, P., & Talja, A. (2014). Numerical verification of stainless steel overall buckling

curves. Thin-Walled Structures, 83, 52-58.

doi:https://doi.org/10.1016/j.tws.2014.01.011

Huang, Z., Li, D., Uy, B., Thai, H.-T., & Hou, C. (2019). Local and post-local buckling of fabricated high-strength steel and composite columns. Journal of Constructional Steel Research, 154, 235-249. doi:https://doi.org/10.1016/j.jcsr.2018.12.004 Kwon, Y. B., & Seo, E. G. (2013). Prediction of the compressive strength of welded RHS

columns undergoing buckling interaction. Thin-Walled Structures, 68, 141-155.

Liu, E. L., & Wadee, M. A. (2016). Geometric factors affecting I-section struts experiencing local and strong-axis global buckling mode interaction. Thin-Walled Structures, 109, 319-331.

Meng, X., & Gardner, L. (2020). Behavior and Design of Normal- and High-Strength Steel SHS and RHS Columns. Journal of Structural Engineering, 146(11), 04020227.

doi:doi:10.1061/(ASCE)ST.1943-541X.0002728

Mohammed, A., & Afshan, S. (2019). Numerical modelling and fire design of stainless- steel hollow section columns. Thin-Walled Structures, 144, 106243.

Ranawaka, T., & Mahendran, M. (2010). Numerical modelling of light gauge cold-formed steel compression members subjected to distortional buckling at elevated temperatures. Thin-Walled Structures, 48(4), 334-344.

doi:https://doi.org/10.1016/j.tws.2009.11.004

Tayyebi, K., & Sun, M. (2020). Stub column behavior of heat-treated and galvanized RHS manufactured by different methods. Journal of Constructional Steel Research, 166, 105910. doi:https://doi.org/10.1016/j.jcsr.2019.105910

Toneff, J. D., Stiemer, S. F., & Osterreder, P. (1987). Local and Overall Buckling in Thin‐Walled Beams and Columns. Journal of Structural Engineering, 113(4), 769-786. doi:doi:10.1061/(ASCE)0733-9445(1987)113:4(769)

Vieira, L., Gonçalves, R., & Camotim, D. (2018). On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Structures, 129, 10-19.

doi:https://doi.org/10.1016/j.tws.2018.03.022

Wang, J., Afshan, S., Schillo, N., Theofanous, M., Feldmann, M., & Gardner, L. (2017).

Material properties and compressive local buckling response of high strength steel square and rectangular hollow sections. Engineering Structures, 130, 297-315.

doi:https://doi.org/10.1016/j.engstruct.2016.10.023

Dokumen terkait