Given that results obtain from the simulation-based project are extremely subjective due to the input data which comes from the user themselves, it must be verified through actual lab experiment before it can be applied in the real-world.
Thus, for those who will continue this work, it is recommended to conduct a lab experiment and compare the obtained results with this research. From there, a further refinement can then be done on the simulation parameter itself and increase its relative reliability for future applications in industry.
66 APPENDIX
Theoretical and Numerical results of critical buckling load for steel grade S275
67
Theoretical and Numerical results of critical buckling load for steel grade S275
68
Theoretical and Numerical results of critical buckling load for steel grade S275
69
Theoretical and Numerical results of critical buckling load for steel grade S275
70
Theoretical and Numerical results of critical buckling load for steel grade S275
71
Theoretical and Numerical results of critical buckling load for steel grade S275
72
Theoretical and Numerical results of critical buckling load for steel grade S355
73
Theoretical and Numerical results of critical buckling load for steel grade S355
74
Theoretical and Numerical results of critical buckling load for steel grade S355
75
Theoretical and Numerical results of critical buckling load for steel grade S355
76
Theoretical and Numerical results of critical buckling load for steel grade S355
77
Theoretical and Numerical results of critical buckling load for steel grade S355
78
Theoretical and Numerical results of critical buckling load for steel grade S460
79
Theoretical and Numerical results of critical buckling load for steel grade S460
80
Theoretical and Numerical results of critical buckling load for steel grade S460
81
Theoretical and Numerical results of critical buckling load for steel grade S460
82
Theoretical and Numerical results of critical buckling load for steel grade S460
83
Theoretical and Numerical results of critical buckling load for steel grade S460
84
FEA results of RHS column with increasing in opening numbers
85
FEA results of RHS column with increasing in opening numbers
86
FEA results of RHS column with increasing in opening numbers
87
FEA results of RHS column with increasing in opening numbers
88
FEA results of RHS column with increasing in opening numbers
89
FEA results of RHS column with increasing in opening numbers
90
BIBLIOGRAPHY
AL-Shareef, N. H. (Mar. 2018). Impact of Openings on the Buckling of RHS Steel Column. JUBES, vol. 26, pp. 209 – 226
Ahmed, S., & Ashraf, M. (2017). Numerical investigation on buckling resistance of stainless-steel hollow members. Journal of Constructional Steel Research, 136, 193-203. doi:https://doi.org/10.1016/j.jcsr.2017.05.017
Batista, E. d. M. (2009). Local–global buckling interaction procedures for the design of cold- formed columns: Effective width and direct method integrated approach. Thin-Walled Structures, 47(11), 1218-1231.
doi:https://doi.org/10.1016/j.tws.2009.04.004
Degée, H., Detzel, A., & Kuhlmann, U. (2008). Interaction of global and local buckling in welded RHS compression members. Journal of Constructional Steel Research, 64(7), 755-765. doi:https://doi.org/10.1016/j.jcsr.2008.01.032
Ellobody, E. (2007). Buckling analysis of high strength stainless steel stiffened and unstiffened slender hollow section columns. Journal of Constructional Steel Research, 63(2), 145-155. doi:https://doi.org/10.1016/j.jcsr.2006.04.007
Gardner, L., Fieber, A., & Macorini, L. (2019). Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures, 17, 2-20.
doi:https://doi.org/10.1016/j.istruc.2019.01.012
Gardner, L., & Nethercot, D. A. (2004). Experiments on stainless steel hollow sections—
Part 2: Member behaviour of columns and beams. Journal of Constructional Steel Research, 60(9), 1319-1332. doi:https://doi.org/10.1016/j.jcsr.2003.11.007
Gardner, L., & Nethercot, D. A. (2004). Numerical Modeling of Stainless-Steel Structural Components—A Consistent Approach. Journal of Structural Engineering, 130(10), 1586-1601. doi:doi:10.1061/(ASCE)0733-9445(2004)130:10(1586) Gardner, L., & Young, B. (2019). Finite element modelling and design of stainless steel
SHS and RHS beam-columns under moment gradients. Thin-Walled Structures, 134, 220-232. doi:10.1016/j.tws.2018.10.004
Gonçalves, R., & Camotim, D. (2004). GBT local and global buckling analysis of aluminum and stainless-steel columns. Computers & Structures, 82(17), 1473- 1484. doi:https://doi.org/10.1016/j.compstruc.2004.03.043
91
Hradil, P., & Talja, A. (2014). Numerical verification of stainless steel overall buckling
curves. Thin-Walled Structures, 83, 52-58.
doi:https://doi.org/10.1016/j.tws.2014.01.011
Huang, Z., Li, D., Uy, B., Thai, H.-T., & Hou, C. (2019). Local and post-local buckling of fabricated high-strength steel and composite columns. Journal of Constructional Steel Research, 154, 235-249. doi:https://doi.org/10.1016/j.jcsr.2018.12.004 Kwon, Y. B., & Seo, E. G. (2013). Prediction of the compressive strength of welded RHS
columns undergoing buckling interaction. Thin-Walled Structures, 68, 141-155.
Liu, E. L., & Wadee, M. A. (2016). Geometric factors affecting I-section struts experiencing local and strong-axis global buckling mode interaction. Thin-Walled Structures, 109, 319-331.
Meng, X., & Gardner, L. (2020). Behavior and Design of Normal- and High-Strength Steel SHS and RHS Columns. Journal of Structural Engineering, 146(11), 04020227.
doi:doi:10.1061/(ASCE)ST.1943-541X.0002728
Mohammed, A., & Afshan, S. (2019). Numerical modelling and fire design of stainless- steel hollow section columns. Thin-Walled Structures, 144, 106243.
Ranawaka, T., & Mahendran, M. (2010). Numerical modelling of light gauge cold-formed steel compression members subjected to distortional buckling at elevated temperatures. Thin-Walled Structures, 48(4), 334-344.
doi:https://doi.org/10.1016/j.tws.2009.11.004
Tayyebi, K., & Sun, M. (2020). Stub column behavior of heat-treated and galvanized RHS manufactured by different methods. Journal of Constructional Steel Research, 166, 105910. doi:https://doi.org/10.1016/j.jcsr.2019.105910
Toneff, J. D., Stiemer, S. F., & Osterreder, P. (1987). Local and Overall Buckling in Thin‐Walled Beams and Columns. Journal of Structural Engineering, 113(4), 769-786. doi:doi:10.1061/(ASCE)0733-9445(1987)113:4(769)
Vieira, L., Gonçalves, R., & Camotim, D. (2018). On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Structures, 129, 10-19.
doi:https://doi.org/10.1016/j.tws.2018.03.022
Wang, J., Afshan, S., Schillo, N., Theofanous, M., Feldmann, M., & Gardner, L. (2017).
Material properties and compressive local buckling response of high strength steel square and rectangular hollow sections. Engineering Structures, 130, 297-315.
doi:https://doi.org/10.1016/j.engstruct.2016.10.023