• Tidak ada hasil yang ditemukan

Recommendations for future work

Firstly, a longer period of measured data (more data) can be used to determine the coefficients of the angle-specific model. The more the data, the more features of the meteorological conditions of the site can be determined. The features determined in the short period cannot represent as the only features of years. Therefore, more data will provide more information about the site's meteorological conditions, which will lead to a better prediction.

Secondly, a smaller step size of the cosine sun incident angle intervals can also be considered for future work. A smaller step size can show the system's characteristics in more detail as the system's characteristics are different (although the different is small) when the sun's position has a minor movement. Thereby, a smaller step size improves the accuracy of the angle- specific Ross coefficient model.

REFERENCES

Barua, S., Ramaswamy, Arun P. and Boruah, D., 2014. Potential for rooftop solar photovoltaic system in Pondicherry University Campus to promote sustainable development. 10.13140/RG.2.1.4995.8480.

EPA, n.d. Greenhouse Gas Emissions. [Online] Available at:<

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions>

[Accessed 20 August 2021].

Faiman, D. (2008). Assessing the Outdoor Operating Temperature of Photovoltaic Modules. Progress in Photovoltaics: Research and Applications, [e-journal] 16, pp. 307 - 315. 10.1002/pip.813.

Gracia, A. and Huld, T., 2013. Performance comparison of different models for the estimation of global irradiance on inclined surfaces. [Online]

Available at: < https://publications.europa.eu/resource/cellar/4ef8c4e1-4397- 4e27-8487-448786327f27.0001.01/DOC_1> [Accessed 30 August 2021].

Hansberg, C. & Bowden, S., n.d. Declination Angle. [Online] Available at:

<https://www.pveducation.org/pvcdrom/properties-of-sunlight/declination- angle> [Accessed 25 August 2021].

Hansberg, C. & Bowden, S., n.d. The Sun's Position. [Online] Available at:

https: <//www.pveducation.org/pvcdrom/properties-of-sunlight/the-suns- position> [Accessed 25 August 2021].

Jakhrani, A., Othman, A., Rigit, A., Samo, S. and Kamboh, S. (2012).

Estimation of Incident Solar Radiation on Tilted Surface by Different Empirical Methods.[e-journal] 2, pp. 1-6.

Kalogirou, 2017. McEvoy’s Handbook of Photovoltaics. [e-book] Academic Press. Available at: https://doi.org/10.1016/B978-0-12-809921-6.00016-1 [Accessed 14 April 2022].

Koehl, M., Heck, M., Wiesmeier, S. and Wirth, J., 2011. Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cell, [e-journal] 95 (7), pp. 1638–1646.

https://doi.org/10.1016/j.solmat.2011.01.020

Lai, K. Y. & Lim, B.H., 2020. Comparative Study for Time-specific Ross Coefficient and Overall Ross Coefficient for Estimation of Photovoltaic Module Temperature. In: 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET) pp.251-256.

https://dx.doi.org/10.1109/CSUDET47057.2019.9214602.

Lim, B.H., 2022. Basics of Solar Energy. [Online] Available at:

<https://sites.google.com/a/wble2.utar.edu.my/ueea3363-renewable- energy/home/course-content/topic-2-basics-of-solar-energy?authuser=1>

[Accessed 14 April 2022].

Niclas, n.d. Standard Test Conditions (STC): definition and problems. [Online]

Available at: <https://sinovoltaics.com/learning-center/quality/standard-test- conditions-stc-definition-and-problems/> [Accessed 20 August 2021].

Nykmap, DQ, n.d. Spherical coordinates. [Online] Available at:

<https://mathinsight.org/spherical_coordinates> [Accessed 25 August 2021].

Olukan, T. A. & Emziane, M., 2014. A Comparative Analysis of PV Module Temperature Models. Energy Procedia, [e-journal] 62, pp. 694 – 703.

https://doi.org/10.1016/j.egypro.2014.12.433

PennState, n.d. 3.3. Cosine Effect. [Online] Available at: < https://www.e- education.psu.edu/eme812/node/896> [Accessed 25 August 2021].

PennState, n.d. 4.6 Using Components for a Tilted Aperture. [Online]

Available at: <https://www.e-education.psu.edu/eme810/node/685>

[Accessed 30 August 2021].

Ross, R. (1976). Interface design considerations for terrestrial solar cell modules. In: Photovoltaic Specialists Conference, 12th, Baton Rouge, La., November 15-18, 1976, Conference Record. (A78-10902 01-44) New York, Institute of Electrical and Electronics Engineers, Inc. pp. 801-806

Ross, R.G. and M.I. Smokler, 1986. Flat-plate solar 29 array project final report-Vol. VI, Engineering Engineering sciences and reliability. In: JPL Publication, 86-31 NASA, Springfield, VA.

Simmons, S., 2013. Does the home get sunlight? [Online] Available at:

<https://saltspringrealestateagent.com/does-the-home-get-sunlight/ >

[Accessed 14 April 2022].

Skoplaki, E., Boudouvis, A. G., and Palyvos, J. A. Ã. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials & Solar Cells, [e-journal] 92 (11), pp. 1393- 1402. https://doi.org/10.1016/j.solmat.2008.05.016

SmritiS, 2021. What is Mean Squared Error, Mean Absolute Error, Root Mean Squared Error and R Squared? [Online] Available at:

<https://www.studytonight.com/post/what-is-mean-squared-error-mean- absolute-error-root-mean-squared-error-and-r-squared> [Accessed 3 September 2021].

Stine, W.B. and Geyer, M. (2001). Power from the sun. [e-book] Available

through: Power from the sun.net <

http://www.powerfromthesun.net/book.html>

King, Boyson and Kratochvill, 2004. Photovoltaic Array Performance Model.

[Online]. Available at: <https://www.esig.energy/wiki-main- page/photovoltaic-array-performance-model/ > [Accessed 25 August 2021].

Solargis, n.d. Download solar resource maps and GIS data for 200+ countries and regions. [Online] Available at: <https://solargis.com/maps-and-gis- data/download/world> [Accessed 20 August 2021].

Marion, B., 2018. Ground Albedo Measurements and Modeling. [Online]

Available at: < https://www.nrel.gov/docs/fy20osti/72589.pdf> [Accessed 20 August 2021].

APPENDICES

Appendix A: Coding for Calculating Sun’s Position and Cosine Sun Incident Angle

import math as m import pandas as pd import datetime

from datetime import datetime, timedelta

def datetime_range(start, end, delta): # use to calculate the time current = start

while current < end:

yield current current += delta

def create_date (): # use to calculate the date

global table_Azimuth global table_Altitude global table_cosdelta

date =pd.date_range(start="2019-01-01",end="2019-12-31") table_Azimuth=pd.DataFrame(index=range(365))

table_Azimuth['date'] = date

table_Altitude=pd.DataFrame(index=range(365)) table_Altitude['date'] = date

table_cosdelta=pd.DataFrame(index=range(365)) table_cosdelta['date'] = date

def calculation():

N = 1 d=[]

e=[]

z=[]

for i in range (365):

latitude = 3.0408 longtitude = 101.7943 GMT= 120

D = 0

beta = m.radians (10) facing_angle = m.radians (0)

# claculate the declination angle

sindelta =0.39795 * m.cos (m.radians(0.98563*(N-173))) delta = m.asin(sindelta)

delta = m.degrees (delta)

# calculate Longtitude Correction

LC = (GMT- longtitude)/15

#Calculate x

x = 360*(N-1)/365.242

#Calculate Equation of Time

x = m.radians(x)

EOT = 0.258* m.cos(x) - 7.416* m.sin(x) - 3.648* m.cos(2*x) - 9.228 * m.sin(2*x)

# claculate solar time ts = LCT + EOT/60 - LC - D

#calculate hour angle w = 15 * (ts - 12)

# calculate altitude angle

delta = m.radians(delta) latitude = m.radians(latitude) w = m.radians(w)

a = m.asin(m.sin(delta)* m.sin(latitude)+ m.cos(delta)*m.cos(w)*m.cos(latitude)) a = m.degrees(a)

#Calculate Azimuth angle a_radians = m.radians(a)

cosA= (m.sin(delta)* m.cos(latitude) - m.cos(delta) * m.cos(w)* m.sin(latitude)) / m.cos(a_radians)

b = -1* m.cos(delta) * m. sin(w)/ m.cos(a_radians)

if cosA > 0:

A = m.asin(b)

A = "{:.2f}".format(A) A = float (A)

else:

A = 180 - m.degrees (m.asin(b)) A = "{:.2f}".format(A)

A = float (A)

if a < 0: # no sun when less a less than 0 a =float ("NaN")

A = float ("NaN") a = "{:.2f}".format(a) a = float (a)

A_radians = m.radians(A)

if a == "NaN" and A =="NaN":

cos_delta = float ("NaN") else:

cos_delta= m.cos(beta) *m.sin (a_radians)+ m.cos(a_radians)*m.sin(beta)*m.cos (facing_angle- A_radians)

cos_delta= "{:.2f}".format(cos_delta)

N += 1

d.append(cos_delta) e.append(a)

z.append(A) table_cosdelta[j] = d table_Altitude[j] = e

table_Azimuth[j] = z

global LCT global j global time global g

create_date()

time = [dt.strftime('%H:%M ') for dt in

datetime_range(datetime(2021, 1, 1, 0), datetime(2021,1,1,23,59), timedelta(minutes=1))]

for j in time:

LCT = j

(hour,minute)= LCT.split(":")

LCT = int (hour) + int (minute)/60 # convert time to decimal calculation()

table_Altitude.to_csv(r'Altitude2019.csv', index=None, header=True) table_Azimuth.to_csv(r'Azimuth2019.csv', index=None, header=True) table_cosdelta.to_csv(r'cosdelta2019.csv', index=None, header=True)

Appendix B: Coding for Retrieving and Processing the Data from 21st January 2020 to 2nd February 2020 and Compiling All the Interested Data

import math as m import pandas as pd import datetime

from datetime import datetime, timedelta

def datetime_range(start, end, delta): # use to calculate the time current = start

while current < end:

yield current current += delta

time = [dt.strftime('%H:%M ') for dt in

datetime_range(datetime(2021, 1, 1, 7), datetime(2021,1,1,20), timedelta(minutes=1))]

a = pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\UTAR 2020 Weather Station Data compiled.xlsm', sheet_name = 'Raw data')

b = pd.read_csv(r'C:\Users\Asus\Desktop\Y4S3\Project\Coding\cosdelta.csv') c= pd.read_csv(r'C:\Users\Asus\Desktop\Y4S3\Project\Coding\altitude.csv')

# the needed data for the date 20200121

df =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 1.xlsx')

# start from 1705 row to 13400 and skip 15 row after retreived one data, 2:7:4 --> to obtain the data and the module temperature

temperature1 = df.iloc[1000:12700:15,2:7:4] # 47 mins time shift temperature1 = temperature1.reset_index()

temperature1 = temperature1.iloc[0:,1:]

solarirradiance = a. iloc[29213:29993, 12] # 28800 (20*60*24) +420 -7 = 29213 solarirradiance = solarirradiance.reset_index()

solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[29213:29993, 7] # 20-7 = 13 ; 13 *60 = 780; 780+29213 = 29993 windspeed = windspeed.reset_index()

windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[29213:29993,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[20, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[20, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature1['ambient temperature'] = ambienttemperature temperature1['solar irradiance'] = solarirradiance

temperature1['wind speed'] = windspeed temperature1['cosinetheta'] = consinetheta temperature1 ['Solar Altitude Angle'] = alpha temperature1 ['Time'] = time

temperature1 = temperature1.loc[temperature1["Solar Altitude Angle"] > 0]

temperature1 = temperature1.reset_index() temperature1 = temperature1.iloc[0:,1:]

df2 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 2.xlsx')

temperature2 = df2.iloc[909:12609:15,2:7:4]

temperature2 = temperature2.reset_index() temperature2 = temperature2.iloc[0:,1:]

solarirradiance = a. iloc[30653:31433, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[30653:31433, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[30653:31433,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[21, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[21, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature2['ambient temperature'] = ambienttemperature temperature2['solar irradiance'] = solarirradiance

temperature2['wind speed'] = windspeed temperature2['cosinetheta'] = consinetheta temperature2 ['Solar Altitude Angle'] = alpha temperature2 ['Time'] = time

temperature2 = temperature2.loc[temperature2["Solar Altitude Angle"] > 0]

df3 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 3.xlsx')

temperature3 = df3.iloc[960:12660:15,2:7:4]

temperature3 = temperature3.reset_index() temperature3 = temperature3.iloc[0:,1:]

solarirradiance = a. iloc[32093:32873, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[32093:32873, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[32093:32873,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[22, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[22, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature3['ambient temperature'] = ambienttemperature temperature3['solar irradiance'] = solarirradiance

temperature3['wind speed'] = windspeed temperature3['cosinetheta'] = consinetheta temperature3 ['Solar Altitude Angle'] = alpha temperature3 ['Time'] = time

temperature3 = temperature3.loc[temperature3["Solar Altitude Angle"] > 0]

df4 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 4.xlsx')

temperature4 = df4.iloc[1040:12740:15,2:7:4]

temperature4 = temperature4.reset_index() temperature4 = temperature4.iloc[0:,1:]

solarirradiance = a. iloc[33533:34313, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[33533:34313, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[33533:34313,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[23, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[23, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature4['ambient temperature'] = ambienttemperature temperature4['solar irradiance'] = solarirradiance

temperature4['wind speed'] = windspeed temperature4['cosinetheta'] = consinetheta temperature4 ['Solar Altitude Angle'] = alpha temperature4 ['Time'] = time

temperature4 = temperature4.loc[temperature4["Solar Altitude Angle"] > 0]

df5 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 5.xlsx')

temperature5 = df5.iloc[1033:12733:15,2:7:4]

temperature5 = temperature5.reset_index() temperature5 = temperature5.iloc[0:,1:]

solarirradiance = a. iloc[34973:35753, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[34973:35753, 7]

windspeed = windspeed.reset_index()

windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[34973:35753,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[24, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[24, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature5['ambient temperature'] = ambienttemperature temperature5['solar irradiance'] = solarirradiance

temperature5 ['wind speed'] = windspeed temperature5 ['cosinetheta'] = consinetheta temperature5 ['Solar Altitude Angle'] = alpha temperature5 ['Time'] = time

temperature5 = temperature5.loc[temperature5["Solar Altitude Angle"] > 0]

df6 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 6.xlsx')

temperature6 = df6.iloc[1015:12715:15,2:7:4]

temperature6 = temperature6.reset_index() temperature6 = temperature6.iloc[0:,1:]

solarirradiance = a. iloc[36413:37193, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[36413:37193, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[36413:37193,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[25, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[25, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature6['ambient temperature'] = ambienttemperature temperature6['solar irradiance'] = solarirradiance

temperature6['wind speed'] = windspeed temperature6['cosinetheta'] = consinetheta temperature6 ['Solar Altitude Angle'] = alpha temperature6 ['Time'] = time

temperature6 = temperature6.loc[temperature6["Solar Altitude Angle"] > 0]

df7 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 7.xlsx')

temperature7 = df7.iloc[1004:12704:15,2:7:4]

temperature7 = temperature7.reset_index() temperature7 = temperature7.iloc[0:,1:]

solarirradiance = a. iloc[37853:38633, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[37853:38633, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[37853:38633,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[26, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[26, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature7['ambient temperature'] = ambienttemperature temperature7['solar irradiance'] = solarirradiance

temperature7['wind speed'] = windspeed temperature7['cosinetheta'] = consinetheta temperature7 ['Solar Altitude Angle'] = alpha temperature7 ['Time'] = time

temperature7 = temperature7.loc[temperature7["Solar Altitude Angle"] > 0]

df8 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 8.xlsx')

temperature8 = df8.iloc[1050:12750:15,2:7:4]

temperature8 = temperature8.reset_index() temperature8 = temperature8.iloc[0:,1:]

solarirradiance = a. iloc[39293:40073, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[39293:40073, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[39293:40073,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[27, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[27, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature8['ambient temperature'] = ambienttemperature temperature8['solar irradiance'] = solarirradiance

temperature8['wind speed'] = windspeed temperature8['cosinetheta'] = consinetheta temperature8 ['Solar Altitude Angle'] = alpha temperature8 ['Time'] = time

temperature8 = temperature8.loc[temperature8["Solar Altitude Angle"] > 0]

df9 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020012 9.xlsx')

temperature9 = df9.iloc[1070:12770:15,2:7:4]

temperature9 = temperature9.reset_index() temperature9 = temperature9.iloc[0:,1:]

solarirradiance = a. iloc[40733:41513, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[40733:41513, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[40733:41513,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[28, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[28, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature9['ambient temperature'] = ambienttemperature temperature9['solar irradiance'] = solarirradiance

temperature9['wind speed'] = windspeed temperature9['cosinetheta'] = consinetheta temperature9 ['Solar Altitude Angle'] = alpha temperature9 ['Time'] = time

temperature9 = temperature9.loc[temperature9["Solar Altitude Angle"] > 0]

df10 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020013 0.xlsx')

temperature10 = df10.iloc[1118:12818:15,2:7:4]

temperature10 = temperature10.reset_index() temperature10 = temperature10.iloc[0:,1:]

solarirradiance = a. iloc[42173:42953, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[42173:42953, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[42173:42953,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[29, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[29, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature10['ambient temperature'] = ambienttemperature temperature10['solar irradiance'] = solarirradiance

temperature10['wind speed'] = windspeed temperature10['cosinetheta'] = consinetheta temperature10 ['Solar Altitude Angle'] = alpha temperature10 ['Time'] = time

temperature10 = temperature10.loc[temperature10["Solar Altitude Angle"] > 0]

df11 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020013 1.xlsx')

temperature11 = df11.iloc[1182:12882:15,2:7:4]

temperature11 = temperature11.reset_index() temperature11 = temperature11.iloc[0:,1:]

solarirradiance = a. iloc[43613:44393, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[43613:44393, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[43613:44393,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[30, 421:1201]

consinetheta = consinetheta.reset_index()

consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[30, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature11['ambient temperature'] = ambienttemperature temperature11['solar irradiance'] = solarirradiance

temperature11['wind speed'] = windspeed temperature11['cosinetheta'] = consinetheta temperature11 ['Solar Altitude Angle'] = alpha temperature11 ['Time'] = time

temperature11 = temperature11.loc[temperature11["Solar Altitude Angle"] > 0]

df12 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020020 1.xlsx')

temperature12 = df12.iloc[648:12348:15,2:7:4]

temperature12 = temperature12.reset_index() temperature12 = temperature12.iloc[0:,1:]

solarirradiance = a. iloc[45053:45833, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[45053:45833, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[45053:45833,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[31, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[31, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature12['ambient temperature'] = ambienttemperature temperature12['solar irradiance'] = solarirradiance

temperature12['wind speed'] = windspeed temperature12['cosinetheta'] = consinetheta temperature12 ['Solar Altitude Angle'] = alpha temperature12 ['Time'] = time

temperature12 = temperature12.loc[temperature12["Solar Altitude Angle"] > 0]

df13 =

pd.read_excel(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200203\735\2020020 2.xlsx')

temperature13 = df13.iloc[1017:12717:15,2:7:4]

temperature13 = temperature13.reset_index() temperature13 = temperature13.iloc[0:,1:]

solarirradiance = a. iloc[46493:47273, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[46493:47273, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[46493:47273,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[32, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[32, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature13['ambient temperature'] = ambienttemperature temperature13['solar irradiance'] = solarirradiance

temperature13['wind speed'] = windspeed temperature13['cosinetheta'] = consinetheta temperature13 ['Solar Altitude Angle'] = alpha temperature13 ['Time'] = time

temperature13 = temperature13.loc[temperature13["Solar Altitude Angle"] > 0]

df14 =

pd.read_csv(r'C:\Users\Asus\Desktop\Y4S3\Project\Data\Arduino\20200224\735\LOGGER0 3.csv')

temperature14 = df14.iloc[1121:12821:15,2:7:4]

temperature14 = temperature14.reset_index() temperature14 = temperature14.iloc[0:,1:]

solarirradiance = a. iloc[62328:63113, 12]

solarirradiance = solarirradiance.reset_index() solarirradiance =solarirradiance.iloc[0:,1:]

windspeed= a.iloc[62328:63113, 7]

windspeed = windspeed.reset_index() windspeed = windspeed.iloc[0:,1:]

ambienttemperature = a.iloc[62328:63113,3]

ambienttemperature = ambienttemperature.reset_index() ambienttemperature = ambienttemperature.iloc[0:,1:]

consinetheta = b.iloc[43, 421:1201]

consinetheta = consinetheta.reset_index() consinetheta = consinetheta.iloc[0:,1:]

alpha = c.iloc[43, 421:1201]

alpha = alpha.reset_index() alpha = alpha.iloc[0:,1:]

temperature14['ambient temperature'] = ambienttemperature temperature14['solar irradiance'] = solarirradiance

temperature14['wind speed'] = windspeed temperature14['cosinetheta'] = consinetheta temperature14 ['Solar Altitude Angle'] = alpha temperature14 ['Time'] = time

temperature14 = temperature14.loc[temperature14["Solar Altitude Angle"] > 0]

mergeddata=

temperature1.append(temperature2).append(temperature3).append(temperature4).append(te mperature5).append(temperature6).append(temperature7).append(temperature8).append(tem perature9).append(temperature10).append(temperature11).append(temperature12).append(te mperature13).append(temperature14)

mergeddata = mergeddata.rename(columns = {'Temp 2': 'Module Temperature'})

mergeddata.to_csv(r'compiled data 4.csv', index=None, header=True)

Appendix C: Coding for Conventional Ross Coefficient Model

import math as m import pandas as pd

df =pd.read_csv(r'C:\Users\Asus\Desktop\Modified Data\2019\compiled data (2019).csv') rosscoefficient = pd.DataFrame()

rosscoefficient = df.iloc[0:,:4]

rosscoefficient['Different in Temperature']= rosscoefficient.iloc[0:,1]- rosscoefficient.iloc[0:,2]

rosscoefficient.to_csv(r'rosscoefficient(2019).csv', index=None, header=True)

Appendix D: Coding for Sandia Model

import math as m import pandas as pd

import matplotlib.pyplot as plt from scipy import stats import seaborn as sns

df = pd.read_csv(r'C:\Users\Asus\Desktop\Y4S3\Project\Coding\merged data.csv') temp= pd.DataFrame()

temp = df.iloc[0:,:5]

sandia = temp

for i in range (len(temp)):

if temp.iloc[i,1] == 0 or temp.iloc[i,1]== float("NaN"):

sandia = sandia.drop(i)

sandia['temperature different'] = (sandia.iloc[0:,4]-sandia.iloc[0:,3]) sandia= sandia.reset_index()

temp = sandia

for i in range (len(temp)):

if temp.iloc[i,6] < 0:

sandia = sandia.drop(i)

sandia= sandia.drop('index', axis =1)

sandia['ln(tmod-tamb/ solar irradiance)'] = (sandia.iloc[0:,4]-sandia.iloc[0:,3]) /sandia.iloc[0:,1]

sandia['ln(tmod-tamb/ solar irradiance)']=sandia['ln(tmod-tamb/ solar irradiance)'].apply(lambda x: float(m.log(x)))

sandia.to_csv(r'sandia.csv', index=None, header=True)

Appendix E: Coding for Faiman Model

import math as m import pandas as pd

import matplotlib.pyplot as plt from scipy import stats import seaborn as sns

df = pd.read_csv(r'C:\Users\Asus\Desktop\Y4S3\Project\Coding\compiled data 4.csv')

faiman = df.iloc[0:,:5]

faiman['Different in Temperature']= faiman.iloc[0:,1]- faiman.iloc[0:,2]

faiman['y-axis (G/ tmod-tamb)'] =faiman.iloc[0:,3] /faiman.iloc[0:,5]

# remove outlier '''

faiman = faiman.loc[faiman['y-axis (G/ tmod-tamb)'] < 3000]

faiman = faiman.loc[faiman['y-axis (G/ tmod-tamb)'] > -3000]

'''

faiman.to_csv(r'faiman(range 3000).csv', index=None, header=True)

Appendix F: Coding for Time-specific Ross Coefficient Model

import math as m import pandas as pd

from datetime import datetime, timedelta import matplotlib.pyplot as plt

from scipy import stats import seaborn as sns

df = pd.read_csv(r'C:\Users\Asus\Desktop\Modified Data\2019\compiled data (2019).csv')

timespecific = df.iloc[0:,:4]

timespecific['Different in Temperature']= timespecific.iloc[0:,1]- timespecific.iloc[0:,2]

timespecific['Time']= df.iloc[0:,6]

hour1 = timespecific.loc[timespecific['Time'] <="08:00"]

# From the compiled data retrieved all the data that collected after 8AM and assign it to temp temp = timespecific.loc[timespecific['Time'] > "08:00"]

# From temp retrived the data occur before 9AM hour2 = temp.loc[temp['Time'] <= "09:00"]

temp = timespecific.loc[timespecific['Time'] > "09:00"]

hour3= temp.loc[temp['Time'] <= "10:00"]

temp = timespecific.loc[timespecific['Time'] > "10:00"]

hour4 = temp.loc[temp['Time'] <= "11:00"]

temp = timespecific.loc[timespecific['Time'] > "11:00"]

hour5 = temp.loc[temp['Time'] <= "12:00"]

temp = timespecific.loc[timespecific['Time'] > "12:00"]

hour6 = temp.loc[temp['Time'] <= "13:00"]

temp = timespecific.loc[timespecific['Time'] > "13:00"]

hour7 = temp.loc[temp['Time'] <= "14:00"]

temp = timespecific.loc[timespecific['Time'] > "14:00"]

hour8 = temp.loc[temp['Time'] <= "15:00"]

temp = timespecific.loc[timespecific['Time'] > "15:00"]

hour9 = temp.loc[temp['Time'] <= "16:00"]

temp = timespecific.loc[timespecific['Time'] > "16:00"]

hour10 = temp.loc[temp['Time'] <= "17:00"]

temp = timespecific.loc[timespecific['Time'] > "17:00"]

hour11 = temp.loc[temp['Time'] <= "18:00"]

temp = timespecific.loc[timespecific['Time'] > "18:00"]

hour12 = temp.loc[temp['Time'] <= "19:00"]

hour13 = timespecific.loc[timespecific['Time'] > "19:00"]

hour1.to_csv(r'hour1(try3).csv', index=None, header=True) hour2.to_csv(r'hour2(try3).csv', index=None, header=True) hour3.to_csv(r'hour3(try3).csv', index=None, header=True) hour4.to_csv(r'hour4(try3).csv', index=None, header=True) hour5.to_csv(r'hour5(try3).csv', index=None, header=True) hour6.to_csv(r'hour6(try3).csv', index=None, header=True)

Dokumen terkait