• Tidak ada hasil yang ditemukan

Porosity of TRHA and Conventional Mortar

5.2 Recommendations

This study aim is mainly focused on the methods of preparing TRHA and the optimize replacement ratio in mortar. To achieve the aim of this research, the TRHAs mortars were undergo certain tests to determine the fresh properties and mechanical properties such as compressive strength, permeability and porosity test. There are some recommendations for future researchers to obtain a more accurate and useful information regarding to TRHA mortar:

1) A comprehensive study on the mechanical properties of TRHA mortar as the pozzolanic reaction took place in it.

2) Other durability test for TRHA mortar should be investigated as TRHA mortar has better porosity and permeability characteristics.

3) A study on acid treatment of rice husk with different molarity of citric acid as well as the period of treatment without extra heat.

REFERENCES

Abhisek Das (2009). Strength Characterisation of Fly Ash Composite Material. 1st ed. Rourkela: National Institute of Technology, p.35.

ASTM Standard C 618-94a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.

Babor, D., Plian, D. and Judele, L. (2009). Environmental Impact of Cconcrete.

[online] Available at: <http://www.ce.tuiasi.ro/~bipcons/Archive/161.pdf>

[Accessed 28 Jul. 2015].

Bhanumathidas, N.,and Mehta, P.K. (2001), “Concrete Mixtures Made with Ternary Blended Cements Containing Fly Ash and Rice-Husk Ash,” Seventh CANMET/ACI Int. Conf. on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 22-27 July, Madras, India, V.M. Malhotra, Ed., ACI SP- 199, ACI, Michigan, 379-391

Bogeshwaran, K., Kalaivani, R., Ashraf, S., Manikandan, G. and Prabhu, G. (2014).

Production of Silica from Rice Husk. International Journal of ChemTech Research, 6(9), pp.4337-4345.

Csbp.com.au, (2015). Concrete. [online] Available at:

<http://csbp.com.au/Media/Contractor-resources/Engineering/ES-14-202-10.aspx>

[Accessed 28 Jun. 2015].

Dakroury, A.E., and Gasser, M.S. 2008. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures. Journal of Nuclear Materials. 381(3): 271–277

Department of Agriculture Peninsular Malaysia. (2014). Paddy Statistic of Malaysia.

[online] available at:

<http://www.doa.gov.my/c/document_library/get_file?uuid=cef1fc5b-0adf-437d- a80e-f3136ee8b968&groupId=358510>[Accessed 19 Jul. 2015].

Edward G. N., 2008. Concrete Construction Engineering Handbook. 2nd ed. Rutgers University Piscataway, New Jersey: CRC Press

Expertsmind.com, (n.d.). Grades Of Concrete, Concrete Technology, Assignment Help. [online] Available at: <http://www.expertsmind.com/topic/concrete- technology/grades-of-concrete-914591.aspx> [Accessed 1 Aug. 2015].

Ganesan, K., K. Rajagopal, K. Thangavel, 2008. Rice husk ash blended cement:

Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22(8): 1675-1683 Gautam, N., Krishna, V. and Srivastava, A. (2014). Sustainability in the Concrete

Construction. International Journal of Environmental Research and Development, 4(1), pp.81-90.

Gite, B., Rathi, M., Rajguru, R. and Shaikh, A. (n.d.). Advance Construction Material – Micro Silica In Concrete. [online] Engineeringcivil.com. Available at:

<http://www.engineeringcivil.com/advance-construction-material-micro-silica-in- concrete.html> [Accessed 19 Jul. 2015].

Gjorv, O.E., Ngo, M.H., and Mehta, P.K. (1998), “Effect of Rice Husk Ash on the Resistance of Concrete Against Chloride Penetration”, Concrete in Severe Environment, Tromso, Norway.

Habeeb, G. and Mahmud, H. (2010). Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Mat. Res., 13(2), pp.185-190.

Health.ny.gov, (2012). Important Things to Know About Landfill Gas. [online]

Available at:

<https://www.health.ny.gov/environmental/outdoors/air/landfill_gas.htm>

[Accessed 28 Jul. 2015].

Helgilibrary.com,. (n.d.). HelgiLibrary - HelgiLibrary. [online] available at:

<http://www.helgilibrary.com/charts/index/the-dirtiest-countries-by-co2- emissions>[Accessed 19 Jul. 2015].

Hu, H. and Kavan, P. (2014). Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis. Sustainability, 6(11), pp.8012-8028.

Kapur, P. C. (1985) "Production of Reactive Bio-silica from the Combustion of Rice husk in a Tube-in Basket (TiB) Burner", Powder Technol., 44, 63-67.

Kartini, Mahmud, H. and Hamidah, M. (2010). Absorption and Permeability Performance of Selangor Rice Husk Ash Blended Grade 30 Concrete. Journal of Engineering Science and Technology, Volume 1(No.1), pp.1-16.

Kassim, K.A., and Chern, K.K. 2004. Lime stabilized Malaysian cohesive soils. Civil engineering National Journal. 16(1): 13-23

Khassaf, S., Jasim, A. and Mahdi, F. (2014). Investigation The Properties Of Concrete Containing Rice Husk Ash To Reduction The Seepage In Canals.

International Journal Of Scientific & Technology Research, Volume 3(Issue 4), pp.348-354.

Knowledgebank.irri.org, (2015). Importance of Rice. [online] Available at:

<http://www.knowledgebank.irri.org/ericeproduction/Importance_of_Rice.htm>

[Accessed 18 Jul. 2015].

Krishnarao, R., Subrahmanyam, J. and Jagadish Kumar, T. (2001). Studies on the Formation of Black Particles in Rice Husk Silica Ash. Journal of the European Ceramic Society, 21(1), pp.99-104.

Kula. S.. Ay. N..Turan. S. and Putiııı. E., 1996. Effect of Active Silica on the Microstructure of Porcelain IV.CeramtcConn/essProteetliiijis Book lEılt. Turan, S., Kara, F. anılPutıiıı, E.) 279-86.

Kurama, H. and Kurama, S. (2003). The Effect of Chemical Treatment on The Production of Active Silica from Rice Husk. In: International Mining Congress and Exhibition of Turkey. pp.431-435.

Lothenbacha, B., Scrivenerb, K. and Hooton, R. (2011). Supplementary Cementitious Materials. In: Cement and Concrete Research. Elsevier, pp.1244–

1256.

Mamlouk, M. and Zaniewski, J. (2006). Materials for civil and construction engineers. 2nd ed.

Mark, J. (2012). Methane’s Contribution to Global Warming is Worse than You Thought. [online] Earthisland.org. Available at:

<http://www.earthisland.org/journal/index.php/elist/eListRead/methanes_contribu tion_to_global_warming_is_worse_than_you_thought/> [Accessed 28 Jul. 2015].

Mehta, P. K. (2002). ―Greening of the Concrete Industry for Sustainable Development.‖ ACI Concrete International, V. 24(7), 23-28.

Mehta, P.K. and Folliard, K.J. (2002), “Rice Husk Ash - A Unique Supplementary Cementing Material” Durability Aspects, Recent Advances in Cementitious Materials, University of Wisconsin, Milwaukee, Wisconsin, USA.

Nair, D., Fraaij, A., Klaassen, A. and Kentgens, A. (2008). A Structural Investigation Relating to the Pozzolanic Activity of Rice Husk Ashes. Cement and Concrete Research, 38(6), pp.861-869.

Nature.nps.gov,. (2013). NPS: Explore Nature » Air Resources » Air Quality Basics - Sulfur Dioxide Effects on Health. [online] available at:

<http://www.nature.nps.gov/air/AQBasics/understand_so2.cfm>[Accessed 19 Jul.

2015].

Neville, A.M. (2002). Properties of Concrete. 4th ed. Pearson Education Limited.

Neville, A.M. and Brooks, J.J. (2010). Concrete Technology. 2nd ed. Essex: Pearson Education Limited, p.442.

Nguyen, V. (2011). Rice Husk Ash as a Mineral Admixture for Ultra High Performance Concrete. 1st ed. Netherlands, pp.1-183.

Nicole, P.H., Monteiro, P.J.M., and Carasek, H. 2000. Effect of Silica Fume and Rice Husk Ash on Alkali-Silica Reaction. Materials Journal. 97(4): 486-492.

Northoff, E. (2008). FAO Expects Rice Production to Rise by 1.8 Percent in 2008.

[online] Fao.org. Available at:

<http://www.fao.org/Newsroom/en/news/2008/1000820/index.html> [Accessed 17 Jul. 2015].

Olawale, O., Oyawale, F., Makinde, O. and Ogundele, K. (2012). Effect of Oxalic Acid on Rice Husk. International Journal of Applied Science and Engineering Research, 1(5), pp.663-668.

OmotolaAlawode and O.I. Idowu (2011) Effects of Water-Cement Ratios on the Compressive Strength and Workability of Concrete and Lateritic Concrete Mixes.

The Pacific Journal Of Science And Technology, 105(104).

Opic.gov, (n.d.). Renewable Energy in India's Rice Belt: Husk Power Systems | OPIC : Overseas Private Investment Corporation. [online] Available at:

<https://www.opic.gov/projects/husk-power-systems> [Accessed 19 Jul. 2015].

Preeti Tiwari et al. "Effect Of Salt Water On Compressive Strength Of Concrete"Int.

Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 4( Version 5), April 2014, pp.38-42

Ramezanianpour, A., Mahdi khani, M. and Hmadibeni, G. (2009). The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes.

International Journal of Civil Engineering, 7(2), pp.83-91.

Reddy, D.V., and Alvarez, M. (2006), “Marine Durability Characteristics of Rice Husk Ash-Modified Reinforced Concrete”.

Sakr, K. 2006. Effects of Silica Fume and Rice Husk Ash on the Properties of Heavy Weight Concrete. Journal of materials in civil engineering. 18 (3): 367-376.

Salas, A., Delvasto, S., de Gutierrez, R. and Lange, D. (2009). Comparison of Two Processes for Treating Rice Husk Ash for Use in High Performance Concrete.

Cement and Concrete Research, 39(9), pp.773-778.

Santiaguel, A. (n.d.). IRRI - A Second Life for Rice Husk. [online] Irri.org. Available at: <http://irri.org/rice-today/a-second-life-for-rice-husk> [Accessed 19 Jul. 2015].

Sapei, L., Pramudita, A. and Widjaja, L. (2014). Pure Amorphous Silica Derived from Calcined Acid-Leached Rice Husk - Ubaya Repository. [online]

Repository.ubaya.ac.id. Available at: <http://repository.ubaya.ac.id/9123/>

[Accessed 3 Aug. 2015].

Saraswathy, V., Song Ha-Won. Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 2007. 21 (8): p.1779–1784

Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007). Influence of Pozzolan from Various By-product Materials on Mechanical Properties of High-strength Concrete. Construction and Building Materials, 21(7), pp.1589-1598.

Smith, R.G. and Kamwanja, G.A. 1986. The Use of Rice Husk for Making a Cementitious Material, Proc. Joint Symposium on the Use of Vegetable Plants and their Fibers as Building Material, Baghdad.

Souza, M., Magalhães, W. and Persegil, M. (2002). Silica Derived from Burned Rice Hulls. Mat. Res., 5(4), pp.467-474.

Sugita, S., Yu, Q., Shoya, M., Sukinaga, Y.T., and Isojima, Y. (1997), “The Resistance of Rice Husk Ash Concrete to Carbonation, Acid Attack and Chloride Penetration”, High Performance Concrete, ACI Int. Conf., Kuala Lumpur, Malaysia, 29-43.

Sugita, S., Yu, Q., Shoya, M., Tsukinaga, Y., and Isojima, Y. 1997. In the Proceedings of the 1997 10th International Congress on the Chemistry of Cement, Gothenburg. pp.85-109.

Sustainableconcrete.org.uk,.Aggregates. [online] available at:

<http://www.sustainableconcrete.org.uk/top_nav/what_is_concrete/aggregates.asp x>[Accessed 3 Aug. 2015].

Taylor, G. (2004,). Rice Husk Ash. [online] The Institute of Concrete Technology.

Available at: http://www.ricehuskash.com/UK%20-

%20ICT%20News%2055%20-%20Nov%20Edition.pdf> [Accessed 19 Jul. 2015].

Thomas, J. and Jennings, H. (n.d.). 5.4.2 - Calcium-Silicate-Hydrate (C-S-H) gel.

[online] Iti.northwestern.edu. Available at:

http://iti.northwestern.edu/cement/monograph/Monograph5_4_2.html [Accessed 4 Feb. 2016].

Ugheoke, I. and Mamat, O. (2012). A Critical Assessment and New Research Directions of Rice Husk Silica Processing Methods and Properties. 1st ed. [ebook]

Maejo International Journal of Science and Technology, pp.434-435. Available at:

<http://www.mijst.mju.ac.th/vol6/430-448.pdf> [Accessed 18 Jul. 2015].

Ujhelyi, J. and Ibrahim, A. (1991). Hot Weather Concreting with Hydraulic Additives. Cement and Concrete Research, 21(2-3), pp.345-354.

Umeda, J. and Kondoh, k. (2008). Process Optimization to Prepare High-purity Amorphous Silica from Rice Husks via Citric Acid Leaching Treatment. Joining and Welding Research Institute, 37(1).

Umeda, J., Imai, H. and Kondoh, K. (2009). Polysaccharide Hydrolysis and Metallic Impurities Removal Behavior of Rice Husk in Citric Acid Leaching Treatment.

Joining and Welding Research Institute, 38(2), pp.13-18.

Umeda, J., Kondoh, K. and Michiura, Y. (2007). Process Parameters Optimization in Preparing High-Purity Amorphous Silica Originated from Rice Husks. Materials Transactions, 48(12), pp.3095-3100.

Van Oss, H. (2015). Cement. [online] minerals.usgs.gov. Available at:

<http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2015-cemen.pdf>

[Accessed 23 Jul. 2015].

Vrijheid, M. (2000). Health Effects of Residence Near Hazardous Waste Landfill Sites: A Review of Epidemiologic Literature. Environ Health Perspect, 108(s1), 101-112. doi:10.1289/ehp.00108s1101

Wada, I., Kawano, T., Kawakami, M., and Maeda, N. (2000), “Effect of Highly Reactive Rice Husk Ash on Durability of Concrete and Mortar”, Durability of Concrete, CANMET/ACI, Barcelona, Spain, 205-222.

Ww2.utusan.com.my,. (2009). Bajet 2010. [online] available at:

<http://ww2.utusan.com.my/utusan/special.asp?pr=bajet2010&y=2009&dt=1025

&pub=BAJET2010&sec=Laporan_Ekonomi&pg=le_16.htm>[Accessed 20 July.

2015].

Yuzer, N., Cinar, Z., Akoz, F., Biricik, H., YalcinGurkan, Y., Kabay, N. and Kizilkanat, A. (2013). Influence of Raw Rice Husk Addition on Structure and Properties of Concrete. Construction and Building Materials, 44, pp.54-62.

Zhang, M.H., Lastra, R., and Malhotra, V.M. 1996. Rice Husk Ash Paste and Concrete: Some Aspects of Hydration and the Microstructure of the Interfacial Zone between the Aggregate and Paste. Cement and Concrete Research. 26(6):

963-977.

Zhu, Q. (2011). CO2 Abatement in the Cement Industry. [online] Iea-coal.org.uk.

Available at: <http://www.iea-coal.org.uk/documents/82745/8189/co2-abatement- in-the-cement-industry> [Accessed 7 Aug. 2015].

Dokumen terkait