• Tidak ada hasil yang ditemukan

Recommendations

Dalam dokumen THE CHARACTERISTICS OF TAP AH KAOLIN SOIL (Halaman 35-66)

CHAPTER 6 RECOMMENDATIONS

6.1 Recommendations

CHAPTER6 RECOMMENDATIONS

Based on the intensive study being taken by the author, it is found that the kaolin properties in the studied area gives different fact about kaolin soil as compared to the properties of kaolin from other country. There are a few areas that need further investigation by other parties which study can give better results and some modification to the soil. The author cannot perform better results or data since lack of samples due to tiine constraint artd difficult to get the slimples. In the future, mote samples from different distinguished and wide coverage area should be used to give complete data for this study. Undisturbed samples should be collected in variety of depth, for instance 1.5m, 3m, 4.5 m and etcetera. More tests should be carried out to determine the exact properties of the soil by performing Permeability test, Hydtaulie conductivity, Oedometer test or chemical test to check the mineral of the kaolin soil.

REFERENCES

AMERICAN ASSOCIATION OF STATE HIGHWAY AND

TRANSPORTATION OFFICIALS (1977). Geometric design for resurfacing, restoration and rehabilitation of highway and streets.

AASHTO Wa8hington D.C., U.S.A.

BASSAM, Z.M , Dead Sea Water As A Soil Improvement Agent, Mu'tah University, Jordan.

BRITISH STANDARD INSTITUTION, 1990, Methods of test for soils for civil engiheeti.Iig putposes, BS 1377- 1990: Part 2, and 4.

BRITISH STANDARD INSTITUTION, 1981, Code of practice for Site investigations, BS 5930.

DAS, BRAJA M., " Principles of Geotechnical Engineering", Fifth Edition Brook/Cole, 2002, p 311-358.

EMHAMMED, A.B, ROSLAN, H. AND AGUS, S.M. Effect of the Cement- Rice Husk Ash on the Plasticity and Compaction Soil.University of Malaya, Kuala Lumpur and Y ogyakarta, Indonesia.

H.M. ABUEL-NAGA AND D.T. BERGADO (2005), Thermal Conductivity Fabric AnisotrOpy Of Saturated Clays.

K.A. KASSIM, R. HAMIR AND K.C. KOK (2005), Modification And Stabilization Of Malaysian Cohesive Soils With Lime.

MUHAMMAD SOFIAN, A. 2006, Determination of Optimum Concentration of Lilne SliJrrY for Soil Stabilization, Master Thesis, Universiti Tekrtologi Malaysia.

S.R. MESCHYAN, "Experimental Rheology of Clayey soil".

TAN, C.C. 2005. Application of Soil Nailing as Protection and Reinforcement for Slope Stabilization. Degree Thesis, Universiti Tekrtologi Malaysia.

Z. ABIDIN, 1991, Investigation Into The Kaolin Occurences ofTapah-Bidor Area, Perak, Report No 6, Geological Survey of Malaysia.

APPENDICES

APPENDIX A: LOCATION MAP & PICTURES APPENDIX B: DATA & CALCULATION

101" 05'

II ::

APPENDIX A

LOCATION MAP & PICTURES

-+-> ~ Tolu

~.

Q uo1ernary

Permian:

Limes tone

Carboniferous Limes!one

+

.;-

+ + +

'\

+

~ +

+ +

+ +

+ + cr

L E G E N D

l· : · . · I

Devonian:

MAP

..

,;

I .1

'

+

..

+ 4' 15'

+

+

+

., +

\

.,

\T 1 + . I . I

', +

'

., + \

1

·' '

Phyllite, schist and slate limestone and sandstone Silurian- Ordovician:

Schist, phyllite and slate with minor sandstone

<Jroniloids

..

5'

··I/

y

I

4' :tS'

Investigated creo

-.r.:•ro"

KILOMETRE I C:

SCALE

l 3 5 KILOMETRES

Figure 2: Area investigated for kaolin by Geological Survey of Malaysia

4' '0'

4'

"''

SCALE

KILOMETRE: I 0 ~ 3 ~ 5 KILOMETRES

Figure 3: Area investigated by the author

LEGEND

1. Assoc!otod Koo!tn tnquttr!et Sdn. ·at~d.

2. Faney THe Work-~ atit:l./ FOOno Mae Kaolin 3. Shum Y!p Loong MlnlnQ Sdn. Blld 4. Vnifed Cloy Producte Sdn. Shd 5. Soon Bea Cloy {/14) Factory 6. Kaolin IMolaytlol Sdn. Bhd.

7. Hino Fott Cloy TrodlnO Co.

9. FOo Ho Cloy Mining Co.

9 Tee>: Hin Kaolin Facrory/Firll Koolln Foerory 10. Soufh !;:on A~lo Kaolin Mlnln'il Sdn. 9hd.

II. Poh Fott Tin MinD No.2 llnoct!11el 12. Poh Felt Tin Mine No.4 IMon Foul 13. Fao Nyten IMOIOyslol Sdn. ijhd.

14. Techcero KoeHn, &ldor

15. A$10- Ceromle a Ch•mlcol Ind. Sdn.

16. Aelo-Ceromlo 0 1 Ind. Sdn ..

I Ind. Sdn.

Figur<; 4: Location of kaolin mines in Tapah-Bidor, Peral (Geological survey of Malaysia)

Figure 5: Kaolin occurrences in Tapah-Bidor, Perak (as investigated by Zainal Abidin Sulaiman, 1991)

Figure 6: Area of S3

Figure 7: Area ofS4

APPENDIXB

DATA AND CALCULATION

Result of Sieve Analysis:

Table 1 :Particle Size distribution of S 1

Opening (mm} 1. Ma$S retained (g) .. Cumulation m•Ss retained (9) Percent finer

2 0 0 100

1.18 96.11 96.11 92.08

0.6 101 197.11 83,76

0.425 36.17 233.28 80.78

0.3 42.25 275.53 77.3

0.212 132.09 407.62 66.41

0.15 339.79 747.41 38.42

0.063 206.14 953.55 21.43

0 260.1 1213.65 0

Table 2:Particle size distribution of 82

Opening <ilimJ

M8ss~(g)··

cumulation m..s Ntilil'led

(g) Perc;ent ·· .. ·

finer ··

2 206.22 206.22 74.41

1.18 87.74 293.96 63.52

0.6 87.23 381.19 52.70

0.425 55.03 436.22 45.87

0.3 31.72 467.94 41.94

0.212 33.62 501.56 37.76

0.15 74.03 575.59 28.58

0.063 202.26 777.85 3.48

Table 3: Particle size distribution of S3

li .Opl!ni~(p1fll)

1

~~~Jf$d(~r·., ·;~~tljola~Ri~~t~-t]ul.•. P~~t~tlet

2 5.46 5.46 99.46

1.18 110.9 116.36 88.49

0.6 160.65 277.01 72.60

0.425 70.24 347.25 65.65

0.3 60.8 408.05 59.63

0.212 80.51 488.56 51.67

0.15 250.86 739.42 26.85

0.063 230.91 970.33 4.01

0 40.56 1010.89 0.00

Table 4: Particle size distribution of 54

2 23.85 23.85 96.72

1.18 90.25 114.1 84.30

0.6 143.65 257.75 64.53

0.425 81.01 338.76 53.38

0.3 65.8 404.56 44.33

0.212 50.8 455.36 37.34

0.15 130.7 586.06 19.35

0.063 80.2 666.26 8.31

0 60.41 726.67 0.00

100 ~~

'

90

/

80 ..-

,. ' l

I

/ /

- 70 I /

e! • ..

c

60

j I /

;;:::

... 50

J ?

"'

c

.d

... 40

i 1//!

!"'""

ll.

30

20 //

.f·

/ /

10

:

0

O.Q1

0.1 1 0

E!article diamete[ {mm\ -+---81

I

Clay and silt

II

Sand

I ---sn _,._~it

Figure 1: Particle size distribution of 8, 82, 83 and 84.

Results of Hydrometer Analysis:

30 m--~q-lttlftHJfl-"lttlffiiiiOIWIAIOOAJtilii~--~----

l . · ..

25 : .. ··

20 _lj.."

·...._,;_:_;..;.__:_;_,;..~~....-:.2~£:::=::::;=;=:::':::::::!----1

Hr

Figure 2: Hr Vs Rh for 51 and 52

Table 5: Test data for 51

tlme(mln) Rh" Rh=Rh+Cm Hr D(mm) Rd k%

0.5 1.031 1.0315 198.08 0.081392 1.0285 8.8182 1 1.029 1.0295 198.09 0.057554 1.0265 8.8010 2 1.0275 1.028 198.09 0.040698 1.0250 8.7881 4 1.025 1.0255 198.10 0.028778 1.0225 8.7667 8 1.022 1.0225 198.12 0.020350 1.0195 8.7410 30 1.018 1.0185 198.13 0.010509 1.0155 8.7067 120 1.0137 1.0142 198.15 0.005255 1.0112 8.6698 480 1.0092 1.0097 198.17 0.002628 1.0067 8.6312 1440 1.005 1.0055 198.19 0.001517 1.0025 8.5952

;:

!!

"'

:;; r:l

0.

..

100 90 80 70

60 50 40 30

20

10

0 0.001

I

clay

I

fine .

O.D1

, ... ,

·· · · · sill ·

/

I

~

oly•is

j _,,

/

0.1 1 10

Particle diameter (nun)

sand

Figure 3: Particle size distribution curve-sieve and hydrometer analysis of S 1

Site (mm) %finer

2.000 100

85.6% of sand

0.060 14.4

5.8% of silt

0.002 8.6

8.6% of clay

-

Table 6: Test data for S2

time(min) Rh' Rh=Rh+Cm Hr D(mm) Rd k%

0.5 1.009 1,0095 198.17 0,078158 1.011500 3.400109 1 1.009 1.0095 198.17 0.055266 1.011500 3.400109 2 1.009 1.0095 198.17 0.039079 1.011500 3.400109 4 1.0085 1.009 198.17 0.027633 1.011000 3.398428 8 1.008 1.0085 198.17 0.019540 1.010500 3.396747 30 1.007 1.0075 198.18 0.010090 1.009500 3.393386 120 1.006 1.0065 198.18 0.005045 1.008500 3.390024 480 1.005 1.0055 198.19 0.002523 1.007500 3.386663 1440 1.0025 1.003 198.20 0.001456 1.005000 3.378259

80

70 I

60

I

~ 50

("

ysts

I

erana ~si

I

i

'! 40 ... 30

~

20 10 0

0.001 O.Q1

Particle dP..l.tor lmou) 1 10

I

clay

I

fine

-

silt

co«$01

fino

1 -

sand

I """""'

Figure 4: Particle size distribution curve-sieve and hydrometer analysis of S2

Size(mm) %finer

2.000 74.41

70.41% of sand

0.060 3.45

0.06% of silt

0.002 3.39

3.39% of clay

-

30 25 20 15

i2

10

5 . 0

~0 100 2 0

-5

·1 0

Hr

Figure 5: Hr Vs Rh for S3 and S4

Table 7: Test data for S3 time(min) Rh'

0.5 1.03 1 1.028 2 1.0275 4 1.026 8 1.022 30 1.016 120 1.014 480 1.009 1440 1.006

100

80

! 60

e

..

Q, ~.

40

20

0 0.001

!clay

Rh:;:Rh+Cm

1.0305 1.0285 1.028 1.0265 1 ,022(5 1.0165 1.0145 1.0095 1.0065

O.G1

lrre I

medium

silt

Hi' D(mm) Rd k%

188.36 0.079371 1.032500 5.55

188.37 0.056125 1.030500 5.54

188.37 0.039687 1.030000 5.54

188.38 0.028063 1.028500 5.53

188.39 (),()19844 1, ()?4(;()() M1

188.42 0.010248 1.018500 5.48

188.42 0.005124 1.016500 5.47

188.44 0.002562 1.011500 5.44

188.46 0.001479 1.008500 5.42

I

v

've""' y~

dromet

'"'

J

0.1 1 10

=ra:::···r~

sand

- I

Figure 6: Particle size distribution curve-sieve and hydrometer analysis of S3

Size(mm) %finer

2.000 99.46

93.93% of sand

0.060 5.53

0.1% of silt

0.002 5.43 5.43% of clay

Table 9: Test data for S4

time(min) Rh' Rh=Rh+Cnl Hr D(mm) Rd k%

0.5 1.03 1.0305 188.36 0.079371 1.032500 8.85

1 1.029 1.0295 188.37 0.056124 1.031500 8.84

2 1.0275 1.028 188.37 0.039687 1.030000 8.83

4 1.026 1.0265 188.38 0.028063 1.028500 8.82

8 1.02 1.0205 188.40 0.019845 1.022500 8.77

30 1.015 1.0155 188.42 0.010248 1.017500 8.72

120 1.01 1.0105 188.44 0.005124 1.012500 8.68

480 1.007 1.0075 188.45 0.002562 1.009500 8.66

1440 1.005 1.0055 188.46 0.001479 1.007500 8.64

100

80

~ 60

J

40

20

0 0.001

clay

-

001 sin

I

vean fys;,

I/ dromet ra al si

/

~

/ /

0.1 1 10

Particle diameter (nun) sand

Figure 7: Particle size distribution curve-sieve and hydrometer analysis of 54

Size(mm) %finer

2.000 96.72

87.88% of sand

0.060 8.84

0.19% of silt

0.002 8.65 8.65% of clay

Result of Liquid & Plastic Limit:

Table 10: Liquid limit ofS1

:•··· >

LkliildNntitt~~Q

.··· .. ·

1 .··•···· .•... · .. 2 .···. •• ••••

·.·· .···· ... ···

..

. ..

.

...•. .· .... \.3 .· •··

.

··.·. .•.

. .

.

Average penetration (mm)

mass of wet soil +container, w2 (g) mass of dry soil +container, w3 (g) mass of container, w1 (g)

mass of moisture (g) mass of dry soil (g) Moisture content (%)

30

E"

28

.s .,

26

1: 0

" 24

'15

l5

22

:;::;

~

20

~

0.. 18 16

30

31

·. · ..

17.65 19.2

40.1 42.2

37.66 39.7

29.9 31.9

10.2 10.3

7.76 7.8

31.44 32.05

• / / /

/ /;

I I

"'

I

32 32.2 33

Moisture content%

Figure 8: Liquid limit Of 81

24.5 48.5 45.88 38.05 10.45 7.83 33.46

/ v.

35 36

linear flow curve

I

'• 4 · ..

26.8 50.47

47.5 39.1 11.37

8.4 35.36

Table 11 : Plastic limit of S 1

·.· ~ nlllif:T~ NCI 1. I. 2 3 ·.·· 4 Aver;~ge

mass of wet soil +container, w, (g) 36.45 42.71 36.74 34.69 37.65

mass of dry soil +container, Ws (g) 35.00 41.66 35.17 33.54 36.34

mass of container, w, (g) 29.43 37.80 29.65 29.08 31.49

mass of moisture (g) 7.02 4.91 7.09 5.61 6.16

mass of dry soil (g) 5.57 3.86 5.52 4.46 4.85

moisture content(%) 26.03 27.20 28.44 25.78 26.87

PI= LL- PL = 32.2- 26.87 = 5.33

Table 12: Liquid limit of S2 ..

. l.iqUid lllrilt . . .. · '

test

No . . ' 1 2 3

Average penetration (mm) 19.5 21 28.8

mass of wet soil +container, w2 (g) 36.4 28.1 26.4

mass of dry soil +container, w3 (g) 34.4 26.0 24.0

mass of container, w, (g) 29.2 20.7 19.6

mass of moisture (g) 2.0 2.1 2.4

mass of dry soil (g) 5.2 5.3 4.4

Moisture content (%) 38.46 39.62 54.55

31 29

-

E 27

/"'

/

:,.."

.§.

c 25

/

·;:o 0

..

/

...

23

111

.. ... ..

c c 0 21

--- ---(" /

...

19

' ' ' '

17 ' ' '

15

+

30 35 38 40 45 50 55 60

moisture content (%)j linear flow curve I Figure 9: Liquid limit of S2

Table 13: Plastic limit of S2

·.··

~~¢itlmltTil$tNI:I

.•.•. 1 ..•. ·· ..

... · .2 •··· .. 3 . I

4. ·••··.

AvM:age ·.· ..

mass of wet soil +container, w2 (g) 38.0 36.6 37.0 37.0 37.2

mass of dry soil +container, w, (g) 36.2 35.1 35.4 35.2 35.5

mass of container, w, (g) 29.1 29.6 29.6 29.4 29.4

mass of moisture (g) 1.8 1.5 1.6 1.8 1.7

mass of dry soil (g) 7.1 5.5 5.8 5.8 6.1

moisture content(%) 25.35 27.27 27.59 31.03 27.81

P/=LL-PL=38-27.81 =10.19

Table 14: Liquid limit of 53

<.

•··· ..

·t.~ulitlihtirr•.t~··.·· ••• ., .•. . .. I

2

. ..

1<···· ..

··~.····

.. ·.

i ...

' < ' .. : •••..• · ... , ·" •... · .• : ·.··

....

' .. · ·., .. · .. ·.· ..

'

···. ' I ...

Average penetration (mm) 16.5 22.2 24.4

mass of wet soil +container, w2 (g) 41.3 43.6 45.3

mass of dry soil +container, w3 (g) 38.3 40.4 43.3

mass of container, w1 (g) 29.9 31.9 38.05

mass of moisture (g) 11.4 11.7 7.25

mass of dry soil (g) 8.4 8.5 5.25

Moisture content(%) 35.71 37.65 38.10

35.---.---.---.---.---.--~

E' g

30 + - - - - + - - - + - - - - + - - - + - - - + - - - 1

~

__ ___....

g 25+---~---+---~----~~~~--+---~

~ ~~

0 20 +----t---t:::...,.--=---+---+----f---l

i :~1

c 15+---r---+-+----~----~---+---f 4>

0.. I

10+---~--~~y--~--+---4---~

1. . '.'

32

34 36 36·5 38 40 42 44

Moisture content(%) jr--.::.:.__.;.:lin:...ea-r-fto_w_c_urv..:.e..:,j

Figure 10: Liquid limit of 53

•• 4

28.1 48.7 45.8 39.1 9.6 6.7 43.28

Table 15: Plastic limit of 53

1 · .

... · .. · 2

••••••••••

.. ···.

.4

~~q~

..

.

· .. . •.. •' : . · .. ·

...

_,'•" ·-,_

mass of wet soil +container, w2 (g) 34.4 40.3 37.74 35.7 37.04 mass of dry soil +container, w, (g) 33 39.7 36.2 34.7 35.90

mass of container, w, (g) 29.43 37.8 29.65 29.08 31.49

mass of moisture (g) 4.97 2.5 8.09 6.62 5.55

mass of dry soil (g) 3.57 1.9 6.55 5.62 4.41

moisture content (%) 39.22 31.58 23.51 17.79 28.02

PI

=

LL - PL = 43.28 -28.02

=

15.26

Table 16: Liquid limit of 54

·.·.··.··.· ... ··:· · .. i.. Witlli'iurilitt~•He

· ...

.... ·· .. · .. ··· ·, i ·.. 1 ' ' ·2 · .. · ·.·', :f

···' ' ' ' > ''···.· .•...

' ·.·. · .. · ,·· ·.·. ·.··

Average penetration (mm) 18.5 23.2 25.4

mass of wet soil +container, w2 (g) 35.5 29.7 27.4

mass of dry soil +container, w3 (g) 33.8 27.2 25.2

mass of container, w1 (g) 29.3 20.7 19.6

mass of moisture (g) 6.2 9 7.8

mass of dry soil (g) 4.5 6.5 5.6

Moisture content (%) 37.78 38.46 39.29

'E

E 30

~ 25

tl>

r: 0

(j

'0

20

r: 0

115

r:

tl>

Q.

10 37

...

.- ~

38 39 40

Moisture content(%)

1--

linear flow curve

Figure 11: Liquid limit of S4

Table 17: Plastic limit of S4

c

.. ~~ti,tlifJtitT·t~9C

ci ,', ',

I'.· ..

t •.... · .. ··. 2 c.,

•• 3 c.··· 1· .. 4

...

mass of wet soil +container, w2 (g) 34.6 36.4 37.5 38 mass of dry soil +container, Ws (g) 33.2 34.6 35.4 37.2

mass of container, w, (g) 29.1 29.6 29.6 29.4

mass of moisture (g) 5.5 6.8 7.9 8.6

mass of dry soil (g) 4.1 5 5.8 7.8

moisture content (%) 34.15 36.00 36.21 10.26

PI= LL- PL

=

39.29-29.15

=

10.14

Average

36.63 35.10 29.43 7.20 5.68 29.15

Result of Particle density:

51 S2 S3 S4

Mass of jar + gas jar+ plate + soil + water (m3) g 1686.20 1720.2 1571 1610.4 Mass of jar+ gas jar+ plate + soil (m2) g 738.00 750.3 695.2 706.4 Mass of jar + gas jar + plate +water (m4) 9 1560.50 1587.7 1471.7 1504.8

Mass of jar+ gas jar+ plate (m1) 9 535.00 535 535 535

Mass of soil (m2-m,) 9 203.00 215.30 160.20 171.40

Mass of water in full jar (m4-m1) g 1025.50 1052.70 936.70 969.80

Mass of water used (m3-m2) 9 948.20 969.90 875.80 904.00

Volume of soil particles (m.-m,)- (m3-m2) ML 77.30 82.80 60.90 65.80 Particle density Ps = (m2-m,)/(m.-m1)-(m3-m,) Mg/m3 2.63 2.60 2.63 2.60

Table 18: Comparison Properties of Tapah Kaolin

K.A. Kassim,

Geological Survey of Malaysia Zaino!

Data Source R. Hamir,

abidin bin Sulaiman K.C. Kok

Area 6501 6502 6503 6504 S1 S2 S3 S4

Soil Tapah kaolin

"~.flhJ$1c:al f)roJ~~tl!tilMI

Particle density 2.64 2.63 2.63 2.63 2.63

Liquid limit(%) 93 32.0 38.5 37.0 38.0

Plastic limit(%) 43 26.9 27.8 28.0 29.0

Plasticity index (%) 50 5.0 10.7 9.0 9.0

.2,.Partie!e sl%8 di$tlibutl9"n

Sand 6.0 85.6 70.41 93.93 87.88

Silt 57.6 5.8 0.06 0.1 0.19

Clay 36.4 25.9. 5 6.7

-

8.6 3.390 5.43 8.65

Clay Activity 1.37 0.58 3.24 1.66 1.04

i.$olt

-

ll~~at«!n.

BSCS CE Sand}( clay SM

sw sc sc

uses

MH SM

sw

SP-SC SW-SC

ASCS A,7-5 A-2-4 A-2-6 A-2-4 A-2-4

Result of Vane shear test:

S1·

Deflection of spring,

e,

26°

Rotation of vane 17°

Rotation of spring mounting 43°

By interpolation;

0.098- M = 0.098 - 0.07 4

31-26 31-23

M

=

83Nmm

Vane shear strength, Tv = - - - " ' - - - - -M kN/m2 4.29

= 83

4.29

= 19.35 kN/m2

Moisture content :

Weight of container (g)

=

17.2

Weight of container + sample (g)

=

143.4

Weight of container + dry sample (g)

=

112.4

Weight of sample (g) = 126.2

Weight of dry sample (!l)

=

95.2

S2·

Deflection of sprinQ, s, 20°

Rotation of vane 15°

Rotation of spring mounting 35°

By interpolation;

0.074- M = 0.074- 0.049

23-20 23-16

M = 63Nmm

Vane shear strength, T. = - - - - ' - " - - -M kN/m2 4.29

= 63

4.29

= 14.7

Moisture content:

Weight of container (g) = 19.7

Weight of container+ sample (g) = 171.8

Wei!lht of container+ dry sample (!ll = 128.4

Weightofsample(g)= 152.1

Weightofdrysample(g)= 108.7

Moisture content (%) = 39.9

S3·

Deflection of sprin!l,

e,

21'

Rotation of vane 15'

Rotation of spring mountin!l 36'

By interpolation;

0.074- M = 0.074-0.049

23-21 23-16

M = 67Nmm

Vane shear strength, Tv =

--=----

M kN/m2

4.29

= 67

4.29

= 15.62

Moisture content :

Weight of container (g) = 16.7

Weight of container + sample (g) = 172.8

Wei!lht of container+ dry sample (g)= 129.5

W~ghtofsample(g)= 156.1

Weight of dry sample (g) = 112.8

Moisture content (%) = 38.4

Dalam dokumen THE CHARACTERISTICS OF TAP AH KAOLIN SOIL (Halaman 35-66)

Dokumen terkait