• Tidak ada hasil yang ditemukan

Result and Discussion

Chapter 4: Result and Discussion

4.1 Result and Discussion

I. Reservoir Parameter

Formation top, ft 7800

Reservoir Pressure, psi 4500

Average porosity, % 10

Net Pay, ft 2700

Average water Saturation, % 25

Gas Specific Gravity 0.65

Water Specific Gravity 1.05

Reservoir Temperature, °F 220

Water compressibility, 1/psi 3E.6

Rock Compressibility, 1/psi 3E ..

Permeability, md 0.05

Perforation detail 7800-10500

Resl!rvoir size; ;:u:re 640

Base Temperature, °F 60

Base Pressure, psia 14.4

Wellbore radius, ft 0.354

Drainage area

st

07

Well depth 10500

External radius, ft 4000

Dietz shape factor 31.620

Table 4.1: ReservOir Parameter

The table above shows our reservoir parameter that will be used for calculation and simulation using software.

20

II. Data Acquired from WellFlo

WGR, STB/MMSCF 0.871

Bg, ft3/scf 0.0042

Bw, bbi/STB 1.0410

Ug, cp 0.023

Rho g, lb/ft3 11.87

Uw,cp 0.2824

~ · ~~~~ Rho

w,

fb/ft,~ ---- ~ -- --- ---.- .. --- ---···-····-

62.9653

Siqma w, dyne/em 44.654

Table 4.2: Data calculated by WellF!o

Table shows us several data that are calculated by using WellFlo at pressure 4500 psia and temperature 220°F.

III. Gas Initially In Place (GIIP) Calculation.

From calculation using formula (manually), we get the GITP to be 1376.6Bscf

IV. Water Gas Ratio (WGR) calculation using McKetta Wehe Spreadsheet.

At

Reservoir Temperature Gas Specific Gravity Water Salinity

=220°F

=0.650

= 72160.09 ppm

~ ----

Pf8Ssure, ps19 pressure, psi• Mcl<att1 Welle Cllculation (T r=ZD deg f) MMSCF Wiler Apor.IMMSCF dry giS STB Wiler vapor/MMSCF dry QIS 700)

600) ... ...1!---.s- ..,..,_,~ - - - - - · ~~,~~ ..

- -

----"-'

5(IIJ 5015 0 CDi!Ii84&7 :.162'

.a;

.c£D) oiOI'i 4 9:l574 0007185 O"l92'i7':1 (1~1164 O!lliB'i5 0CD3lle£fjU 0932 3500 l51'i 48SH/ :J 007005 0 CJ921j7J [' %1164 0 007 446 I) 007 485fll4 I Cl"~

Dll ll15 4 75147 :J OlliJ9 0 992513 0$1164 0 too242 0 llll'291f63 1122

:2500 .2515 4 62441 0 omJ9 0 992')1'3 0$1164 0 009359 OOJ9.4~ 127S

2!DJ 2015 UIJJ26 0011559 0992573 09&11&4 0Ci1102B :J 011125:12'i 1505

1!Dl l'i15 423758 001444.3 0992573 09611&4 0 b779 001~ 1 Ell>

1000 '1''i l ClJ7(li 0 02!ll31 0 IJ9257l 0 961164 0 Cil'lt'i8 0019489185 2637

9&1 $5 -3 !6524 :J 020958 0 99257'3 0 961164 0 19'];14 J020357103 2 754

!UJ 915 362 11 021 'l2ll o cmsn o %1164 o o:lJ92 :J02BI<Jni 21114

850 ax; -l77'96 ::JIID007 0992571 0%1164 0021949 :J02Z!J1S67 30))

Em 615 3 72076 :J 024215 0 !m573 0$1164 0 023102 0023595636 3 '33

7&1 765 l&iiDt 0 02'i576 0 99257l 0% 11&1 0 4oi02 0024~ B77

700 715 360725 :J 027126 0 99257'3 0 %11f4 0 I"Q'i879 r'J2650767 3587

65ll 665 J 54332 0 02£1!.'03 0 9'1..!573 0 961164 0 027514 0028292671 3626

600 £,11: 47501 Oo:m:.l 0992573 09&11&4 00295.J6 :J03Xffi7l1 4 109

550 565 J~ 0033376 0992573 0961164 003164.3 ::1 032617'i68 4440

!DJ 515 J3'n 0 llli254 0 992573 0 96: 164 0 034566 0035/4lni 4 637

-450 465 32254 0 0397 4 0 992573 0 961164 0 'l3791.3 0039319564 5320

400 411: 312233 0 044054 0 992571 0 961164 0 0420:9 ::1 0437753A'l 5923

300 )55 '300496 0 0.:3541 0 !m573 0 961164 0 047263 D 0494978:.:2 bL':Il

D) w; 286tl00 0056763 0~'3 0%11&4 0054"'i3 !I 05712fiit'4 7 729

25ll 2fh 210722 o rH>ln o 9'1251 0%1164 0 06.'£'">5 0 IE78:i' i' 4 Cj 17il

Table 4.3: MacKetta Wehe Spreadsheet

McKetta Wehe Calculation

10 I

~ 9

,.,

u. 0 8

I

..,._STB water vapor/MMSCF dry gas

I

fh 7

:E :E

-

~ 0 Q. 6 5

( I J -

>Ill nJ

:DOl 4

~

nJ 3

m ~ 2

...

fh

-

1

' \ \.

' ---...

lk:

C> 0

~ 0 1000 2000 3000 4000 5000 6000 7000 8000 Pressure, psia

Figure 4.1: WGR Vs Pressure graph

From the spreadsheet, at pressure of 4500 psia (reservoir pressure) we get WGR to be 0.871 STB/MMSCF.

V. IPR curve before fracturing.

....

3700

.. ,.

" i

II'_

~ """

"

~ ~

~ ~

c

""'

0

""'

~·1 AQf(wii:IP@)

Re$&rvoir Performance for J-banuserev2

,.

Tot!ll Gas Produd:hin R<dlt (WMSCffdq,l

Pl.tyllr AOf Iii

ll$ll" MIIISCFFday ~cp.(IIIMf<:ffdoll)

4500.000 &1.2fKII 22Q695"44.000

Figure 4.2: IPR curve

R.,.a....,ir ~f!J1 PIDliSO,IIe P~lfclrmanoe

I

"

lj Gt aphmg Wmdow v3 B '" "'.: ;;[,_ 'i;,ji"l

" "

8

iil

"- a c

~ 0

~

~

R•~•rvo(r P•f1o~"e' for J~a$~as,rev.z

sm---~----~--~~---r-====~~~~ I ReseM~ir Pelfonn;anllft fluid Rallo

- l.a1llr 1 Pn!S5U~

'"''

"""'

""'

0.76

o•

025

0 +---.---.---,---L---+'0

0

AOF(eomposlh)

"

PI3JH11r

,..

"""""'

"

Totil $as f>n~tlualion Rate (MMSCflti3Y.!

AOF 8

MMSCF/day p;s!Z/~da)l)

50.299 :l296SIS44ll00 00209

Figure 4.3: IPR curve with WGR

W3leoGGRottill STBIMMSCF

007

"'

s

w

"

!

0

II =

"'

;;;

~

From the IPR cure, we can obtain the AOF of the reservoir which is 50.299 MMscf/d. This AOF indicates the AOF of the reservoir before fracture is introduce to the production interval.

VI. Proppant permeability and Median Diameter analysis Median Diameter = 0.440mm

Pressure (psi) Conductivity (md-ft) Permeability (md)

2000 3118 170

4000 2615 145

6000 2245 127

8000 1818 104

10000 1164 70

.. ..

Table 4.4: Conductivity and Permeabrhty for Median Drameter 0.440mm

11000 C " -

<ilOOOO

~ 9000

~ 8000 ~"

"'

~ 7000 -

a. 6000

~ 5000

~ 4000 '

~

Pressure Vs Conductivity

s

3000 - -"- - --- - u

2000 i

1000

o ! I

o soo 1ooo 1soo 2000 250o 3ooo 350o

I

Conductivity I md-ft)

I

"-"""

_____

" ___________________ "

___

--·""•"·-···-"" ____________ "-- " "---

__

"

_____

""-'

Figure

4.4: Pressure Vs Conductivity for median dian1eter 0.440mm

r-···---·-·· .. - M

I

I

' i

~=, Pressure Vs Permeability

I

~ 900o

I ! § = ... ·.~=·

)!

~ 0 4000 3000

I

0

~:~_

I L

0 100

PE!rmE!abilitv lmdl

150 200

Figure 4.5: Pressure Vs Permeability for median diameter 0.440mm

Median Diameter= 0.508mm

Pressure (psi) Conductivity (md-ft) Permeability (md)

2000 3552 198

4000 3032 172

6000 2408 140

8000 1835

llO

10000 1160 73

.. ..

Table 4.5: Conduct!Vlty and Permeabthty for Median Diameter 0.508mm

11000 '5j10000

~ 9000

~ 8000 ---·--- .

~ 7000

<>. 6ilOO :!! 5000

a

.tooo .-

.2 ~ 3000 , ___ - u 2000 i_

I

lOOO

Pressure Vs Conductivity

"""---

- _---_•-•--•---

--- ---·-.. ·:··-·---~---

I 0 - · - - - - --- --- -- ----, ---

1 o 10oo 1000 3ooo 4ooo

I

\_____ _ _____________

---~onduc!i~~lll'!_~l_

_______________

_j

Figure 4.6: Pressure Vs Conductivity for median diameter 0.508mm

r---~~ 000 ~- P~~ssure Vs ~rm~~bili;;-~--- ---

'5? 10000 -

~ 9000 -- ---- - - :---

~ 8000 ---

~

7000

0. 6000 4000 --- 3()!JO 2000 ..

I

100 150 200 250 1

Permeability ( mdl

'--- --- --- ________________________ ! 1000 ;

0 , ___ _

0 50

Figure 4.7: Pressure Vs Permeability for median dian1etet 0.508mm

Median Diameter= 0.648mm

Pressure (psi) Conductivity (md-ft) Permeability (md)

2000 7339 406

4000 6130 349

6000 5188 301

lWOO 3970 237

10000 2108 132

Table 4.6: Conductivlty and Permeability for Median Diameter 0.648mm

..

11000 .

7000 6000 --

l!! 5000

:::>

"'

"'

..Q u

4000 3000 c--- 2000 1000 0

Pressure Vs Conductivity

.

...

.. ---,

0 2000 4000

Conductivity !md-ft)

6000 sooo 1

I

- - - ' Fi~ 4.8: Pressm-e Vs Conductivity for median diam.eter 0.648mm

~--·---·--·---·---·---l

I I Pressure Vs Permeability

11000

7000 c ______ _

I

6000

1!! 5000

::J

ill 4000 0 0 3000 ..

I

2000 1000 . ---

0

200 300 400 500

I

Permeability lmdl

--~---·----·---

0 100

l _______________ _

Figure 4.9: Pressure V s Permeability for median diamet!)r 0.648mm

Median Diameter= 0.691mm

Pressure (psi) Conductivity (md-ft) Permeability (md)

2000 8656 472

4000 6477 363

6000 4744 270

8000 2952 174

10000 1683 103

Table 4.7: Conductivity and Permeab1ltty for Median Diameter .. 0.691mm

______

,

_____________

, , ,

____

,

_________

~---·----·----]

PrE!ssa.ne Vs CQI"'d\l(:tivity I

11000 - - ---- -- -

·;;; 10000

~ 9000 - ---

8000 '---····---··-'·---- 7000 ... --- -- --

6000 ·"--- --- --- ---- 5000 --1--- ---···-

0 c .. --- ----

0 ~000 4000 6000 10000

Conductivity (md•ft)

_ _ ___j

Figure 4.10: Pressure Vs CQndl!Ctivity fQr median diameter 0.69lmm

~---

- ______ , _______ ,. ______________ , ______ ----l

_____ ~~~-~sure Vs P~r~eability___ I

I

11000 I

~- 10000

- 9000

8000 ._____ - 7000 ---

60QO --- 5000 -' 4000 c ..

3000 ,---·-·-'--- --- ..

2000 "·· --- ________ ,_ .. -- --- - 1000

0 -~

I o

100 200 3oo 4oo soo

il__ - - - · - - - -PermeabilitY (md)

I

Figure 4.11: Pressure V s Permeability for median dianleter 0.69lmm

Based on figure 4.4 to 4.11 and table 4.4 to 4.7, we can determine the proppant median diameter and permeability that will be used at pressure of 4500 psi as per table 4.8.

Proppant Median Diameter (mm) Proppant Permeability (md)

0.440 140

0.508 164

0.648 336

0.691 340

Table 4.8: Proppant permeability wtth relative to Its median diameter.

..

,---··---·----~---·-·-

1

I

I ::

1]3oo

I;:

I

,,250

1

e

200

I~

150

I >OO"

Propant Permeability Vs Median Dia

05 0.6

Median f1a (mm}

Figure 4.12: Proppant Permeability V s Median Diameter

0.7

VII. Detennination on FCD based on its Half-length

Analysjs is done with 4 dimensionless fracture conductivity which are 1, 10, 1 00, 1000.

Permeability Xf (ft) at Fed

(md) 1 10 100 1000

140 23.33333 2.333333 0.233333 0.023333 164 27.33333 2.733333 0.273333 0.027333

336 56 5.6 0.56 0.056

340 56.66667 5.666667 0.566667 0.056667 Table 4.9: Fracture half-length With

.

respect to drmens10nless fracture

conductivity

400 350

300

!

250

>

~ .0 200

1'0 CIJ

E

150

a. CIJ

100

50 0

0.01

Permeability (md) Vs Half length (ft)

FCO 10

- f(02100

- FC02IOOO

0.1 1 10 100

Half Length (ft}

Figure 4.13: Permeability Vs Half length Graph

0 u u.

0.01

FeD (md) Vs Half length (ft)

0.1 1 10

0.1

Half Length (ft)

100

... k- 140

- k- 164

k- 336

- k=340

--~-~

Figure 4.14: FCD V sHalf Length.

From figure 4.13 to 4.14 and table 4.9, we can see that as we decrease the dimensionless fracture conductivity, the fracture half-length will increase for each permeability. Thus, we chose FCD

=

l to be used in our fracture simulation using WellFlo as it will generate the highest fracture half-length.

VIII. AOF

after fracture.

""'

i 8

§

~

j -

1 .

""

lnfl&w hrform<~ru:•

Lav-r Par.~t~Mt•n Moth~

~ T otol ""'dudloa Ral&{MIIISCFIUp)

~u·l"~; )1.•17.~. Y·~~

l>ai<'J CM!IIcl611t No....O"''¥ C...rtl<lellt A0F C-cotdlid411t ll-<l6fl!lciont (!o,i21~ ~~ (MMSCfH.If) (Mt.lsoif4~n)

1.41!1!Qe7 o.oooo.o nuee Jto ... PsoiHioP,_.

'-

~"'-

~

"'

Figure 4.15: IPR curve for median diameter 0.440mm.

""'

..,

8

~ ~

I -

~

I

·~

~~•rfor~t~e Yyer hr4rnet•~ M*l

',~

l<>l~ P!<ldUIIIloh

..

~ (Wiot&Cfld'W) Co....Sirl"'"": X'"to0.9Zl. Y.o111783l)1

DartofCbldlicSQfol N-"'fCOdlcOHI. ADF ~- ....,.otfl'!oiHII.

~fl'hlhk<W~ ~il'f1l) ~l.tll!:,J,ja(.l ty~)

1:!1'1811•1 " ' OJIIIIICalf ad .eM No.,. Pswd<l r>...

I

Figure 4.16: IPR curve for median diameter 0.508mm.

,

..

'""

lnftow P•rJofll'IOIInce

~r Plln:lmmrs Model

e

t~ Pro<lul:lk.B iia !)IYStfl<lffl C..Oodina&ts: x~ 'fti2A200. y-2450.1130 o..,.co.nioi•nt ~~o ... o..,.c~.nid•BI AGf c.-H~a~trll ... -om

~"f)) ~M-..:12) (llloiSCfldlll) (Mio1rclld~

8.3t4!10111 0.0000..0 t311JI50 Nom>. ~'~·- ~ ...

Figure 4,17: IPR curve for median diameter O,M8mm,

!'!ilr.-arhmg Won dow v3 0 ;1 ~J i '" ' '

, ..

'"

1!:

I

~

I

,.,

"

I ,.,

0.'".'Pli:Co~~lll:

~qtl(l,llolmldQD lj:~~

..

~.f (llilloiSCFf~lrJ)

:l-41;1~

lnfl&w Performmc•

Lay•r P.v.:~~Hcr-1"$ Mod•l

~

~

.,

T~ PI'Odwdioa RMe(MMSCF/dQ).

CoDUii..-: Xoo 1111.1161111, Y~5<k11l10!1

(;: .. ~~~~~ "'""~M

-·-

ff~~-~~~oP~

Figure 4.18: IPR curve for median diameter 0.69lmm.

'"'"'

...

"'

"'

Median Dia Proppant AOF after Frac (mm) Perm. (md) (MMsd/d)

0.440 140 79.186

0.508 164 85.860

0.648 336 138.950

0.691 340 140.385

Table 4.10: Proppant Penneablltty and AOF

..

wtth respect to Median Dianteter.

AOF aft·er Frat \Is Median Dia

~ 140.o00 - - - - -

~

:a

130.000 --- ----

~ 120.000

e

110,000 ~--- --- --- ---/

u.

JE

~ 100.000 -;-

u..

.,

90.000 +---:·;;;>"'·

~

80.000 -:---.... --"""-

70.000

+---

!

---- --- --- --- ---

l

0.100 0.450 0.500 Median Diameter (mm) 0.550 0.600 0.650 0.700

---- - - - ----~

Figure <t.l9: AOF V& Median Dianteter

r---·-

-+---·---···---·---

1

AOF after Frac Vs Propant Permeability

.., :::: r-~~~~~~~~~~~--- --- --

~

~ 130.000

J

~--· ---- - - --- - ---- --

120.000 y--- --- - - --- -.. -.. --- -- --

~ uo.ooo 1- ---- ---·

l!

100.000 -!---

" ' I

~ 90.000 I - --

!'( 80.000 --~·---

70.000 -r··---- --- -

1~ ' 150 200 250 Propant Permeability(md)

300

Figure 4.20: AOF Vs Proppant permeability.

350

34

From the figure 4.15 to figure 4.20 and table 4.10, we can see the AOF trend as we increase the median diameter. The Proppant Permeability will increase as we increase the median diameter of the proppant and the highest proppant permeability is when we use proppant with median diameter 0.691mm which give nse proppant permeability of 340md. This will thus increase our AOF by 297% where it increases from 50.299MMscf/d before fracture to 140.385MMscf/d after fracture. Because of that, we chose propoant with median diameter 0.691mm to be nsed for fracture job.

Dokumen terkait