• Tidak ada hasil yang ditemukan

The potential areas that are associated to the scope of this thesis are suggested in this section for future research. From our study, the construction procedures of the synthetic EWMA median chart are introduced under the basic ranked set sampling (RSS) scheme. The data sampling characteristics such as cost-effective, efficient and time-savings often take into consideration by practitioners in manufacturing production process during the selection of control chart. These characteristics based new RSS scheme such as paired double ranked set sampling, extreme paired double ranked set sampling and quartile paired double ranked set sampling are utilized by Noor-ul-Amin et al. (2021) to the creation of some new control charts for monitoring the process mean. They revealed that the incorporation of the proposed control charting structures with the new RSS scheme is more efficacious than other control charting structures under single RSS scheme. The studies completed by Noor-ul-Amin et al. (2021) can be extended to the application of the new RSS scheme as a sampling criterion in the construction of the median chart, synthetic chart and Synthetic EWMA

67

chart in the future. Additionally, another new RSS scheme such as neoteric ranked set sampling (NRSS) has been recommended by Zamanzade and Al‐

Omari (2016) in the valuation of the population mean and variance. This is because the researchers have successfully verified that the performance of NRSS is better than other existing sampling method regardless the type of the underlying distribution of the variables of interest. Koyuncu and Karagoz (2018) and Karagoz and Koyuncu (2019) effectively employed NRSS in the formation of the control charting structures for mean and range of bivariate asymmetric distributions. The studies illustrated that the NRSS method can be expanded in the creation of the synthetic chart and Synthetic EWMA chart.

The underlying distribution of a process is commonly non-normal or undiscovered in the real world. Hence, the researchers such as Abid et al. (2017), Haq (2019), and Abbas et al. (2020b) have suggested the nonparametric control charts like those based on the sign, signed-rank, Wilcoxon signed-rank and nonparametric goodness-of-fit. The findings from Abid et al. (2017) revealed that the suggested nonparametric Cumulative Sum (CUSUM) sign control chart under RSS surpass the nonparametric CUSUM sign chart under SRS with regards to the efficiency of the process mean monitoring. Besides that, the combination of the EWMA sign chart and CRL chart to create synthetic EWMA sign chart are introduced by Haq (2019) for process target deviations examining and the researcher proved that the sensitivity of the suggested chart in determining process shifts is greater than the classical counterparts. Additionally, to examine the process location efficiently, Abbas et al. (2020b) introduced a nonparametric double exponentially weighted moving average (DEWMA) chart

68

based on Wilcoxon signed rank statistic using SRS and RSS schemes. In spite of that, to the best of the author’s information, nonparametric synthetic charts based on RSS scheme have not been proposed yet. Therefore, the attention for the future research may be given on the univariate and multivariate nonparametric synthetic charts proposal using different types of RSS scheme available.

Conventionally, when the mean of a parameter is constant and the process variance is independent of the mean, the traditional Shewhart R or S charts are utilized to examine the process variability. However, the mean may be fluctuating, and the standard deviation may not be independent with mean in practice. For instance, the situation commonly occurs when the practitioners are planning to examine those process outputs which may alter occasionally. While the coefficient of variation (CV) is always constant in a process, the integration of CV to control charts are frequently utilized to tackle and deal with the problematic circumstances. For example, Abbasi et al. (2019) illustrated that the detection ability of the CV charts under numerous ranked set sampling schemes such as RSS, median RSS (MRSS) or extreme RSS (ERSS) is higher than the existing CV chart based on SRS. Besides that, the study from Noor-ul-Amin and Riaz (2020) on the proposed Exponentially Weighted Moving Coefficient of variation control chart under RSS scheme proved that it is more effective than the other CV charts under the log-normal transformation at each shift irrespective with the sample sizes. Moreover, a synthetic chart to examine the multivariate coefficient of variation is suggested by Khaw et al. (2019) when more than one quality variable is involved in the process. Since research studies

69

on the univariate and multivariate synthetic charts and synthetic exponentially weighted moving coefficient of variation chart based on RSS scheme are still deficient, future studies on this area of research could be highlighted.

70 REFERENCE

Abbas, Z., Nazir, H.Z., Akhtar, N., Abid, M. and Riaz, M., 2020a. On designing an efficient control chart to monitor fraction nonconforming. Quality and Reliability Engineering International, 36(2), pp.547-564.

Abbas, Z., Nazir, H.Z., Abid, M., Akhtar, N. and Riaz, M., 2020b. Enhanced nonparametric control charts under simple and ranked set sampling schemes. Transactions of the Institute of Measurement and Control, 42(14), pp.2744-2759.

Abbasi, S.A., Abbas, T. and Adegoke, N.A., 2019. Efficient CV control charts based on ranked set sampling. IEEE Access, 7, pp.78050-78062.

Abid, M., Nazir, H. Z., Riaz, M., and Lin, Z., 2017. Investigating the impact of ranked set sampling in nonparametric CUSUM control charts. Quality and Reliability Engineering International, 33(1), pp.203-214.

Aparisi, F. and de Luna, M. A., 2009. Synthetic-X control charts optimized for in-control and out-of-control regions. Computers & Operations Research, 36(12), pp.3204-3214.

Benneyan, J. C., Lloyd, R. C. and Plsek, P. E., 2003. Statistical process control as a tool for research and healthcare improvement. BMJ Quality &

Safety, 12(6), pp.458-464.

Besterfield, D. H., 2009. Quality Control. 8th ed. New Jersey: Prentice Hall.

Bourke, P. D., 1991. Detecting a shift in fraction nonconforming using run- length control charts with 100% inspection. Journal of Quality Technology, 23(3), pp.225-238.

Bourke, P. D., 2008. Performance comparisons for the synthetic control chart for detecting increases in fraction nonconforming. Journal of Quality Technology, 40(4), pp.461-475.

Calzada, M. E. and Scariano, S. M., 2013. A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 83(5), pp.853-867.

71

Castagliola, P., 2001. An-EWMA control chart for monitoring the process sample median. International Journal of Reliability, Quality and Safety Engineering, 8(02), pp.123-135.

Chakraborti, S., 2007. Run length distribution and percentiles: the Shewhart chart with unknown parameters. Quality Engineering, 19(2), pp.119-127.

Champ, C. W. and Woodall, W. H., 1987. Exact results for Shewhart control charts with supplementary runs rules. Technometrics, 29(4), pp.393-399.

Chen, F. L. and Huang, H. J., 2005. A synthetic control chart for monitoring process dispersion with sample range. The International Journal of Advanced Manufacturing Technology, 26(7), pp.842-851.

Chen, F. L. and Huang, H. J., 2006. Variable sampling interval synthetic control charts for jointly monitoring process mean and standard deviation. International Journal of Industrial Engineering: Theory, Applications and Practice, 13(2), pp.136-146.

Costa, A. F. B. and Rahim, M. A., 2006. A synthetic control chart for monitoring the process mean and variance. Journal of Quality in Maintenance Engineering, 12, pp.81 – 88.

Crowder, S. V., 1987. A simple method for studying run–length distributions of exponentially weighted moving average charts. Technometrics, 29(4), pp.401-407.

Dell, T.R. and Clutter, J.L., 1972. Ranked set sampling theory with order statistics background. Biometrics, pp.545-555.

Gan, F. F., 1993. An optimal design of EWMA control charts based on median run length. Journal of Statistical Computation and Simulation, 45(3-4), pp.169-184.

Garrity, S. M., 1993. Basic Quality Improvement. New Jersey: Prentice-Hall.

Haq, A., 2014. An improved mean deviation exponentially weighted moving average control chart to monitor process dispersion under ranked set sampling. Journal of Statistical Computation and Simulation, 84(9), pp.2011-2024.

72

Haq, A., Brown, J., and Moltchanova, E., 2016. New synthetic EWMA and synthetic CUSUM control charts for monitoring the process mean. Quality and Reliability Engineering International, 32(1), pp.269-290.

Haq, A., 2019. A new nonparametric synthetic EWMA control chart for monitoring process mean. Communications in Statistics-Simulation and Computation, 48(6), pp.1665-1676.

Hu, X., Castagliola, P., Sun, J., and Khoo, M. B., 2015. The effect of measurement errors on the synthetic chart. Quality and Reliability Engineering International, 31(8), pp.1769-1778.

Huang, H. J. and Chen, F. L., 2005. A synthetic control chart for monitoring process dispersion with sample standard deviation. Computers &

Industrial Engineering, 49(2), pp.221-240.

Human, S. W., Kritzinger, P. and Chakraborti, S., 2011. Robustness of the EWMA control chart for individual observations. Journal of Applied Statistics, 38(10), pp.2071-2087.

Hussain, S., Mahmood, T., Riaz, M., and Nazir, H. Z., 2020. A new approach to design median control charts for location monitoring. Communications in Statistics-Simulation and Computation, pp.1-25.

Khaw, K. W., Chew, X., Yeong, W. C. and Lim, S. L., 2019. Optimal design of the synthetic control chart for monitoring the multivariate coefficient of variation. Chemometrics and Intelligent Laboratory Systems, 186, pp.33- 40.

Khoo, M. B., 2005. A control chart based on sample median for the detection of a permanent shift in the process mean. Quality engineering, 17(2), pp.243- 257.

Khoo, M. B., Wong, V. H., Wu, Z. and Castagliola, P., 2012. Optimal design of the synthetic chart for the process mean based on median run length. IIE Transactions, 44(9), pp.765-779.

Klein, M., 1997. Modified Shewhart-exponentially weighted moving average control charts. IIE transactions, 29(12), pp.1051-1056.

Klein, M., 2000. Two alternatives to the Shewhart X control chart. Journal of Quality Technology, 32(4), pp.427-431.

73

Koyuncu, N. and Karagöz, D. E. R. Y. A., 2018. New mean charts for bivariate asymmetric distributions using different ranked set sampling designs. Quality Technology & Quantitative Management, 15(5), pp.602- 621.

Karagöz, D. and Koyuncu, N., 2019. New ranked set sampling schemes for range charts limits under bivariate skewed distributions. Soft Computing, 23(5), pp.1573-1587.

Lee, M. H. and Khoo, M. B., 2017a. Synthetic double sampling s chart. Communications in Statistics-Theory and Methods, 46(12), pp.5914-5931.

Lee, M. H. and Khoo, M. B., 2017b. Optimal design of synthetic np control chart based on median run length. Communications in Statistics-Theory and Methods, 46(17), pp.8544-8556.

McIntyre, G. A., 1952. A method for unbiased selective sampling, using ranked sets. Australian journal of agricultural research, 3(4), pp.385-390.

Mohammed, M. A., Worthington, P. and Woodall, W. H., 2008. Plotting basic control charts: tutorial notes for healthcare practitioners. BMJ Quality &

Safety, 17(2), pp.137-145.

Montgomery, D. C., 2007. Introduction to statistical quality control. John Wiley

& Sons.

Muttlak, H. and Al-Sabah, W., 2003. Statistical quality control based on ranked set sampling. Journal of Applied Statistics, 30(9), pp.1055-1078.

Noor-ul-Amin, M. and Riaz, A., 2020. EWMA control chart for coefficient of variation using log-normal transformation under ranked set sampling. Iranian Journal of Science and Technology, Transactions A:

Science, 44(1), pp.155-165.

Noor-ul-Amin, M., Tayyab, M. and Hanif, M., 2021. Efficient control charts for monitoring the process mean using different paired double ranked set sampling designs. Communications in Statistics-Theory and Methods, 50(10), pp.2211-2223.

74

Nyau, S. Y., Lee, M. H. and Wong, M. D., 2017. Optimal statistical design of variable sample size multivariate exponentially weighted moving average control chart based on median run-length. Quality Technology &

Quantitative Management, 14(4), pp.478-495.

Palm, A. C., 1990. Tables of run length percentiles for determining the sensitivity of Shewhart control charts for averages with supplementary runs rules. Journal of Quality Technology, 22(4), pp.289-298.

Qiu, P., 2013. Introduction to statistical process control. CRC press.

Rajmanya, S. V. and Ghute, V. B., 2014. A synthetic control chart for monitoring process variability. Quality and Reliability Engineering International, 30(8), pp.1301-1309.

Roberts, S. W., 1959. Control chart tests based on geometric moving averages.

Technometrics, 1, pp.239 – 250.

Salazar, R.D. and Sinha, A.K., 1997. Control chart X based on ranked set sampling. Comunicacion Tecica, 1, pp.1-97.

Scariano, S. M. and Calzada, M. E., 2009. The generalized synthetic chart. Sequential Analysis, 28(1), pp.54-68.

Shu, L., Huang, W., Su, Y. and Tsui, K. L., 2013. Computation of the run-length percentiles of CUSUM control charts under changes in variances. Journal of Statistical Computation and Simulation, 83(7), pp.1238-1251.

Takahasi, K. and Wakimoto, K., 1968. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics, 20(1), pp.1-31.

Tan, K.L., Chong, Z.L., Khoo, M.B., Teoh, W.L. and Teh, S.Y., 2017, September. Percentiles of the run-length distribution of the Exponentially Weighted Moving Average (EWMA) median chart. In Journal of Physics:

Conference Series (Vol. 890, No. 1, p. 012156). IOP Publishing.

Tang, A., Castagliola, P., Sun, J. and Hu, X., 2019. Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length. Quality Technology & Quantitative Management, 16(4), pp.439-458.

75

Teoh, W. L., Chong, J. K., Khoo, M. B., Castagliola, P. and Yeong, W. C., 2017.

Optimal designs of the variable sample size chart based on median run length and expected median run length. Quality and Reliability Engineering International, 33(1), pp.121-134.

Tran, K.P., Nguyen, H.D., Nguyen, Q.T. and Chattinnawat, W., 2018. One-sided synthetic control charts for monitoring the coefficient of variation with measurement errors. In 2018 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 1667-1671). IEEE.

Tran, P. H., Tran, K. P. and Rakitzis, A., 2019. A synthetic median control chart for monitoring the process mean with measurement errors. Quality and Reliability Engineering International, 35(4), pp.1100-1116.

Wu, Z. and Spedding, T. A., 2000a. A synthetic control chart for detecting small shifts in the process mean. Journal of Quality Technology, 32(1), pp.32- 38.

Wu, Z. and Spedding, T. A., 2000b. Implementing synthetic control charts. Journal of Quality Technology, 32(1), pp.75-78.

Wu, Z., Yeo, S. H. and Spedding, T. A., 2001. A synthetic control chart for detecting fraction nonconforming increases. Journal of Quality Technology, 33(1), pp.104-111.

Zamanzade, E. and Al-Omari, A. I., 2016. New ranked set sampling for estimating the population mean and variance. Hacettepe Journal of Mathematics and Statistics, 45(6), pp.1891-1905.

Zhang, Y., Castagliola, P., Wu, Z. and Khoo, M.B., 2011. The synthetic [Xbar]

chart with estimated parameters. IIE Transactions, 43(9), pp.676-687.

Zhou, W., Liu, N. and Zheng, Z., 2020. A synthetic control chart for monitoring the small shifts in a process mean based on an attribute inspection. Communications in Statistics-Theory and Methods, 49(9), pp.2189-2204.

76 Appendix A

SAS Program to obtain the (n, λ, L, K) parameters when sample size, n=3

data ewma_syn_median2;

mu=0;

delta=0; /*no shift to find the in-control ARL of 370*/

sigma=1;

n=3; /*sample size selected is 3*/

lambda=0.05;/*smoothing constant 0.05,0.25,0.50,0.75*/

constant=0.4255; /*the parameter K to be found*/

L=20; /*lower limits of CRL 1,5,10,20,50*/

m=10000; /*subgroup size*/

Do p=1 to 10000;

array data_array{10000,3};

Do r=1 to m;

array u[3] u1-u3;

Do j=1 to 3;

Do i=1 to dim(u);

u[i]=mu+sigma*rannor(33333);

end;

data_array{r,j}=smallest(j,of u[*]);

end;

end;

Xsum=0;

Do a=1 to m;

Xsum=Xsum+data_array{a,2};

end;

Xbar=Xsum/m;

Xsumsq=0;

Do c=1 to m;

Do d=1 to n;

Xsumsq=Xsumsq+(data_array{c,d}-Xbar)**2;

end;

end;

Xrsssq=Xsumsq/(n*m-1);

Xvar1=Xrsssq/n;

array column1(10000);

Do a=1 to dim(column1);

column1(a)=data_array{a,1};

77 end;

column1med1=smallest(5000,of column1[*]);

column1med2=smallest(5001,of column1[*]);

column1med=(column1med1+column1med2)/2;

array column2(10000);

Do a=1 to dim(column2);

column2(a)=data_array{a,2};

end;

column2med1=smallest(5000,of column2[*]);

column2med2=smallest(5001,of column2[*]);

column2med=(column2med1+column2med2)/2;

array column3(10000);

Do a=1 to dim(column3);

column3(a)=data_array{a,3};

end;

column3med1=smallest(5000,of column3[*]);

column3med2=smallest(5001,of column3[*]);

column3med=(column3med1+column3med2)/2;

columnmedian=(column1med+column2med+column3med)/n;

Xcol1sum=(column1med-columnmedian)**2;

Xcol2sum=(column2med-columnmedian)**2;

Xcol3sum=(column3med-columnmedian)**2;

Xcolsq=Xcol1sum+Xcol2sum+Xcol3sum;

Xvar2=Xcolsq/(n*n);

Xvar=Xvar1-Xvar2;

Xstdev=sqrt(Xvar);

muhat=Xbar;

sigmahat=Xstdev;

LCL=muhat-constant*sigmahat;

UCL=muhat+constant*sigmahat;

CRL=0;Z=muhat;c=1;

array crl_array{50000,3};

Do k=1 to 50000;

array t[3];

Do a=1 to 3;

Do b=1 to dim(t);

t[b]=(delta/sqrt(n))+sigma*rannor(33333);

end;

crl_array{k,a}=smallest(a,of t[*]);

end;

Xmedcrl=crl_array{k,2};

Z=lambda*Xmedcrl+(1-lambda)*Z;

CRL=CRL+1;

If (Z>UCL) or (Z<LCL) then do;

78 c=0;

end;

else do;

c=1;

end;

If (c=0) and (CRL<=L) then do;

RL=k;

output;k=50001;

end;

If (c=0)and (CRL>L) then do;

Z=muhat;CRL=0;c=1;

end;

end;

end;

run;

proc univariate;

var RL;

output pctlpts=5 10 20 25 30 40 50 60 70 75 80 90 95 pctlpre=p;

proc print;

run;

79 Appendix B

SAS Program to obtain the (n, λ, L, K) parameters when sample size, n=5

data ewma_syn_median2;

mu=0;

delta=0; /*no shift to find the in-control ARL of 370*/

sigma=1;

n=5; /*sample size selected is 5*/

lambda=0.75; /*smoothing constant 0.05,0.25,0.50,0.75*/

constant=3.3058; /*the parameter K to be found*/

L=5; /*lower limits of CRL 1,5,10,20,50*/

m=10000; /*subgroup size*/

Do p=1 to 10000;

array data_array{10000,5};

Do r=1 to m;

array u[5] u1-u5;

Do j=1 to 5;

Do i=1 to dim(u);

u[i]=mu+sigma*rannor(33333);

end;

data_array{r,j}=smallest(j,of u[*]);

end;

end;

Xsum=0;

Do a=1 to m;

Xsum=Xsum+data_array{a,3};

end;

Xbar=Xsum/m;

Xsumsq=0;

Do c=1 to m;

Do d=1 to n;

Xsumsq=Xsumsq+(data_array{c,d}-Xbar)**2;

end;

end;

Xrsssq=Xsumsq/(n*m-1);

Xvar1=Xrsssq/n;

array column1(10000);

Do a=1 to dim(column1);

column1(a)=data_array{a,1};

80 end;

column1med1=smallest(5000,of column1[*]);

column1med2=smallest(5001,of column1[*]);

column1med=(column1med1+column1med2)/2;

array column2(10000);

Do a=1 to dim(column2);

column2(a)=data_array{a,2};

end;

column2med1=smallest(5000,of column2[*]);

column2med2=smallest(5001,of column2[*]);

column2med=(column2med1+column2med2)/2;

array column3(10000);

Do a=1 to dim(column3);

column3(a)=data_array{a,3};

end;

column3med1=smallest(5000,of column3[*]);

column3med2=smallest(5001,of column3[*]);

column3med=(column3med1+column3med2)/2;

array column4(10000);

Do a=1 to dim(column4);

column4(a)=data_array{a,4};

end;

column4med1=smallest(5000,of column4[*]);

column4med2=smallest(5001,of column4[*]);

column4med=(column4med1+column4med2)/2;

array column5(10000);

Do a=1 to dim(column5);

column5(a)=data_array{a,5};

end;

column5med1=smallest(5000,of column5[*]);

column5med2=smallest(5001,of column5[*]);

column5med=(column5med1+column5med2)/2;

columnmedian=(column1med+column2med+column3med+column4med+colu mn5med)/n;

Xcol1sum=(column1med-columnmedian)**2;

Xcol2sum=(column2med-columnmedian)**2;

Xcol3sum=(column3med-columnmedian)**2;

Xcol4sum=(column4med-columnmedian)**2;

Xcol5sum=(column5med-columnmedian)**2;

Xcolsq=Xcol1sum+Xcol2sum+Xcol3sum+Xcol4sum+Xcol5sum;

Xvar2=Xcolsq/(n*n);

Xvar=Xvar1-Xvar2;

Xstdev=sqrt(Xvar);

muhat=Xbar;

sigmahat=Xstdev;

81 LCL=muhat-constant*sigmahat;

UCL=muhat+constant*sigmahat;

CRL=0;Z=muhat;c=1;

array crl_array{50000,5};

Do k=1 to 50000;

array t[5];

Do a=1 to 5;

Do b=1 to dim(t);

t[b]=(delta/sqrt(n))+sigma*rannor(33333);

end;

crl_array{k,a}=smallest(a,of t[*]);

end;

Xmedcrl=crl_array{k,3};

Z=lambda*Xmedcrl+(1-lambda)*Z;

CRL=CRL+1;

If (Z>UCL) or (Z<LCL) then do;

c=0;

end;

else do;

c=1;

end;

If (c=0) and (CRL<=L) then do;

RL=k;

output;k=50001;

end;

If (c=0)and (CRL>L) then do;

Z=muhat;CRL=0;c=1;

end;

end;

end;

run;

proc univariate;

var RL;

output pctlpts=5 10 20 25 30 40 50 60 70 75 80 90 95 pctlpre=p;

proc print;

run;

82 Appendix C

SAS Program to obtain the (n, λ, L, K) parameters when sample size, n=9

data ewma_syn_median2;

mu=0;

delta=0; /*no shift to find the in-control ARL of 370*/

sigma=1;

n=9; /*sample size selected is 9*/

lambda=0.05; /*smoothing constant 0.05,0.25,0.50,0.75*/

constant=0.5633; /*the parameter K to be found*/

L=10; /*lower limits of CRL 1,5,10,20,50*/

m=10000;/*subgroup size*/

Do p=1 to 10000;

array data_array{10000,9};

Do r=1 to m;

array u[9] u1-u9;

Do j=1 to 9;

Do i=1 to dim(u);

u[i]=mu+sigma*rannor(33333);

end;

data_array{r,j}=smallest(j,of u[*]);

end;

end;

Xsum=0;

Do a=1 to m;

Xsum=Xsum+data_array{a,5};

end;

Xbar=Xsum/m;

Xsumsq=0;

Do c=1 to m;

Do d=1 to n;

Xsumsq=Xsumsq+(data_array{c,d}-Xbar)**2;

end;

end;

Xrsssq=Xsumsq/(n*m-1);

Xvar1=Xrsssq/n;

array column1(10000);

Do a=1 to dim(column1);

column1(a)=data_array{a,1};

83 end;

column1med1=smallest(5000,of column1[*]);

column1med2=smallest(5001,of column1[*]);

column1med=(column1med1+column1med2)/2;

array column2(10000);

Do a=1 to dim(column2);

column2(a)=data_array{a,2};

end;

column2med1=smallest(5000,of column2[*]);

column2med2=smallest(5001,of column2[*]);

column2med=(column2med1+column2med2)/2;

array column3(10000);

Do a=1 to dim(column3);

column3(a)=data_array{a,3};

end;

column3med1=smallest(5000,of column3[*]);

column3med2=smallest(5001,of column3[*]);

column3med=(column3med1+column3med2)/2;

array column4(10000);

Do a=1 to dim(column4);

column4(a)=data_array{a,4};

end;

column4med1=smallest(5000,of column4[*]);

column4med2=smallest(5001,of column4[*]);

column4med=(column4med1+column4med2)/2;

array column5(10000);

Do a=1 to dim(column5);

column5(a)=data_array{a,5};

end;

column5med1=smallest(5000,of column5[*]);

column5med2=smallest(5001,of column5[*]);

column5med=(column5med1+column5med2)/2;

array column6(10000);

Do a=1 to dim(column6);

column6(a)=data_array{a,6};

end;

column6med1=smallest(5000,of column6[*]);

column6med2=smallest(5001,of column6[*]);

column6med=(column6med1+column6med2)/2;

array column7(10000);

Do a=1 to dim(column7);

column7(a)=data_array{a,7};

end;

column7med1=smallest(5000,of column7[*]);

84 column7med2=smallest(5001,of column7[*]);

column7med=(column7med1+column7med2)/2;

array column8(10000);

Do a=1 to dim(column8);

column8(a)=data_array{a,8};

end;

column8med1=smallest(5000,of column8[*]);

column8med2=smallest(5001,of column8[*]);

column8med=(column8med1+column8med2)/2;

array column9(10000);

Do a=1 to dim(column9);

column9(a)=data_array{a,9};

end;

column9med1=smallest(5000,of column9[*]);

column9med2=smallest(5001,of column9[*]);

column9med=(column9med1+column9med2)/2;

columnmedian=(column1med+column2med+column3med+column4med+colu mn5med+column6med+column7med+column8med+column9med)/n;

Xcol1sum=(column1med-columnmedian)**2;

Xcol2sum=(column2med-columnmedian)**2;

Xcol3sum=(column3med-columnmedian)**2;

Xcol4sum=(column4med-columnmedian)**2;

Xcol5sum=(column5med-columnmedian)**2;

Xcol6sum=(column6med-columnmedian)**2;

Xcol7sum=(column7med-columnmedian)**2;

Xcol8sum=(column8med-columnmedian)**2;

Xcol9sum=(column9med-columnmedian)**2;

Xcolsq=Xcol1sum+Xcol2sum+Xcol3sum+Xcol4sum+Xcol5sum+Xcol6sum+

Xcol7sum+Xcol8sum+Xcol9sum;

Xvar2=Xcolsq/(n*n);

Xvar=Xvar1-Xvar2;

Xstdev=sqrt(Xvar);

muhat=Xbar;

sigmahat=Xstdev;

LCL=muhat-constant*sigmahat;

UCL=muhat+constant*sigmahat;

CRL=0;Z=muhat;c=1;

array crl_array{50000,9};

Do k=1 to 50000;

array t[9];

Do a=1 to 9;

Do b=1 to dim(t);

t[b]=(delta/sqrt(n))+sigma*rannor(33333);