• Tidak ada hasil yang ditemukan

CSI 501 - LOGIC AND INFERENCE SYSTEMS - APR. 1994

N/A
N/A
Protected

Academic year: 2024

Membagikan "CSI 501 - LOGIC AND INFERENCE SYSTEMS - APR. 1994"

Copied!
5
0
0

Teks penuh

(1)

UNTVERSITI SAINS

MALAYSTA

PePeriksaan Semester Ifudua

Sidang Akademik 1993194

APril

1994

CSI501 - Logic and Inference

Systems

Masa:

t3jaml

ARAHAN KEPADA CALON:

.

Sila pastikan bahawa kertas pgperiksaan

ini

mengandungi

LIMA

muka surat yang

Uetc.it

t

sebelum anda

memulfian

peperiksaan

ini'

r

(2)

Answer

AtL

questions.

1

. (a)

For each of the

following

formula" argue

informally

whether

it is

valid or

not. If

it

is not, show whether

it

is consistent(satisfiable) or inconsistent(unsatisfiable).

(i) Vx P(x)

=+

3x

P(x)

(il) 3v Q0) =+Vx

Q(x)

(iii) -'[

Q(a) =+

3x

Q(x)

I

(7t2s)

(b) tet

11 be an interpretation as

follows

:

DomainD={a,b}.

P(a,a)

e- T

P(a,b) e-

F

P(b,a) +- T P(b,b) +-

F

Determine the truth value of the

following

formulas under 11 :

(i) Vx 3y P(x,y)

(ii) 3y Vx

P(x,y)

(6t25)

(c) htt

the

following

predicate-calculus formula into clause

form

:

3x 3y Vz {

(

P(x,y)

=+

[ P(y,z) n

P(z,z)

] ) n

( [ P(x,y) nQ(x,y) ] +

[

Q(x,z) n

Q(z,z)

] )

]

(7tzs)

(d)

Given the

following

substitutions cr and F,

cl- { xe g(y), y e g(b),2 e u

} F

= t y e

g(b),

u ? z,v <- g(g(b))

)

f, = p(u,v,x,y,z)

Find

the value

of Ect, (Ecl)F, ap,

E(crp).

(stzs\

I

i8?

...3t-

(3)

lcslsOu

-3-

2. (a)

I-et S

: P(x) v

Q(x,

f(y))

be

a

clause

with

two

literals.

Describe the Herbrand universe

oi'S,-ffErUirih'6r"" of

S

*O

give one Herbrand interpretation

which

a

model

of S. 6n5)

(b)

Consider the

following

interpretation 12 :

Domain: D =lI,2l

Assignmentof constants

a

and

D:

ae1 be2

Assignment for

function "f

:

f(t)=2 f(2)=t

Assignment for Predicato

P

:

P(l,l) <- T

P(1,2) eT

P(2,1) e

F

P(2,2) +

F

.(i)LetG:VxVytP(T,y).1|(f^(x),f(I))].EvaluatethetruthvalueofG

undei ir.-ir lr'" inoirii'or c i if

ncit,

frlio

another interpretation 13

which

is a model of G.

(ii)

Find a Herbrand interpretation which satisfies G. Justify your answer.

(8t2s)

(c) What is

meant

by a

ground instance

of

a clause

?

Show

informally that

the

following

observations arc true :

(i) A

clause

c

is

falsified

by a4 intqrp.retaqon

I if an{

o-ply

if t}ere

is at least

on"-

gr*nd

instance C'

of

C suchiJrat C' is not satisfied by

I.

(ii) A

set S

of

clauses is unsatisfiable

if

and

only if for

every.interDretation

I,

there is ar least

onr gtoiia i*fi;

C; or

roh"

clause

i in s

such that C'

is nor satisfied by

I.

(7125)

(d)

State and discu'ss the

significance of

the Herbrand's Theorem

in

mechanical

theorem

Proving. *n5)

(4)

3. (a) Use the ground resolution

method

to prove that the following well-formed

formula is

valid

:

I Vx 3y P(x,y) n Vy 3zQ$,2) ] + Vx 3y 3z (P(x,y) n

Q(y,z))

(st2s)

(b)

Consider the

following set

S of clauses :

1. D(x,x)

2. -'D(x,y) -'D(y,z) D(x,z)

3. P(x) D(g(x), x) 4. P(x) L(w,

g(x))

5. P(x) L(g(x), x) 6. L(w,a)

7. -'P(x) -'D(x,a)

8. -L(w,x) -'L(x,a) P(f(x))

9. -'L(w,x) -'L(x,a) D(f(x),x)

Use either

input

resolution

or

set

of

support strategy (SOS)

to find

a refutation

for S. If you

choose

to

use SOS,

you

are

free to find an

appropriate

initial

support set.

Note

: Only a

is a skolem constant

in

S.

(ru2s)

(c)

Consider the

following

stalements :

S

I :

Anyone who likes

Ali will

choose Ahmad for his tearn.

52 :

Ahmad is not a friend of anyone who is a friend of Abdul.

53 :

Kassim

will

choose no one but a friend of Karim

for

his tearn.

Use

the resolution

method

to

prove

that if Karim is

a

friend of Abdul,

then Kassim does not like

Ali.

(6t2s)

(d)

Describe the main differences between paramodulation and demodulation rules

of

inference'

@tzs)

:

,g{

...5t-

(5)

lcsls0ll

-5-

4. (a) Briefly

discuss

the relationship

between mechanical theorem

proving, logic

programming and

PROLOG.

6nS)

(b) Find

an

SlD-refutation to

show

that p(nrb) is

a

logical

consequence

of

the

following

logic program :

p(x,y) e q(x), f(y).

q(x) <- r(x).

f(x) <- t(x).

t(a) e

t(b) e

r(n) e-

Nole: Only 4b,

and

n

are Skolem

constants. gl25)

(c)

Consider the

following

PROLOG program :

rel(a,b).

rel(c,b).

rel(X,Z) :- rel(X,Y), tel(Y,Z).

rel(X,Y) :- rel(Y,X).

Describe the behavior of the typicat PROLOG interpreter

q

nnOinq

$9

answer !o

the

query ;"ti;;;).-i"ttrJ

udtiavior

or

answer

given

desireable ?

If not,

show

how the O"iirjaLf'" behavior

and answer can

6e

obtained

by ry1

other

logic

programming method.

what

conclusion can you say about PROLOG ?

(7tzs)

(d) Write

a

PROLOG

program that can

find

an intersection

of two

sets

which

are

given in the form of lists.

Example

?- intersect([a,b,c,d], [b,c,e,g],

Y) gives y =

[b, c]

?- intersect([a,

b],

[c,d],

Y)

gives

Y

=

[]

?-

intersect([,

[a,bJ,

Y)

gives

Y

=

[]

?- intersect([a,bl;

[], Y)

gives

Y

=

[]

(7tzs)

Referensi

Dokumen terkait

Peperiksaan Semester Kedua Sidang Akademik 199Q97 April 1997 MAT 102/lvlAT 201 - Kalkulus Lanjutan Masa: t3jaml ARAHAN KEPADA CALON: Sila pastikan bahawakertas peperiksaan ini

UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang 1994195 April, 1995 AAP4O3 - PERNIAGAAN KERAJAAN & MASYARAKAT Masa: [2 janil ARAHAN Sila pastikan bahawa kertas

UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik L994 /95 April 1995 ZMC 21113 - Kaedah Matemati_j< II_ Masa : [3 jam] Sila pastikan bahawa kertas

UNIVERSITI SAINS MALAYSIA Peperiksaan Semeter Tarrbahan Sidang Akademik 1993194 Jun 1994 EU.M-?01 - .Matematik Kej.urgtpraqn III Masa : [3 jam] ARAHAN KEPADA CALON: Sila pastikan

IJMVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik t997 t98 September 197 IUK291 - Matematiktr Masa: t3jaml ARAHAN KEPADA CALON: Sila pastikan bahawa kertas

UNTVERSM SAINS MALAYSTA Peperiksaan Semester Kedua Sidang Akademik 1995196 Mac/April 1996 ZSC 548 - Analisis Stnrktur Melalui Kaedah Sinar-X Masa : [3jam] sila pastikan bahawa kertas

UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 200512006 April/Mei 2006 MAT 202 - Pengantar Analisis Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini

UNIVERSITI SAINS MAIAYSIA Peperiksaan Semester Kedua diCang Akademik 1 e93/e4 April 1994 EES 1Q?Q ' MrnerPl I Masa: 3 iam ARAHAN KEPADA CALON sila pastikan bahawa kertas soalan ini