2017
© Penerbit UTHM First Published 2017 Second Published 2019
Copyright reserved. Reproduction of any articles, illustrations and content of this book in any form be it electronic, mechanical photocopy, recording or any other form without any prior written permission from The Publisher’s Office of Universiti
Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor is prohibited. Any negotiations are subjected to calculations of royalty and honorarium.
Perpustakaan Negara Malaysia Cataloguing—in—Publication Data Tay, Kim Gaik
Numerical Methods with CASIO fx-570ES PLUS Calculator / TAY KIM GAIK, PHANG CHANG, LIM KIAN BOON.
Includes index
Bibliography: page 253 ISBN 978-967-0764-75-7
1. Calculators. 2. Mathematical instruments.
I. Phang, Chang. II. Lim, Kian Boon. III. Title.
510.284
Published by:
Penerbit UTHM
Universiti Tun Hussein Onn Malaysia 86400 Parit Raja,
Batu Pahat, Johor No. Tel: 07-453 7051 No. Faks: 07-453 6145 Website: http://penerbit.uthm.edu.my
E-mail: [email protected] http://e-bookstore.uthm.edu.my Penerbit UTHM is a member of Majlis Penerbitan Ilmiah Malaysia
(MAPIM) Printed by:
PERCETAKAN IMPIAN SDN BHD No. 67, Jalan Bukit 9, Kawasan Perindustrian Miel
Bandar Baru Seri Alam 81750 Masai, Johor
v
To Teoh Eng Soon, Teoh Sin Yee and Teoh Jia Wei To Kuan Kai Chin, Phang Yi Yang and Phang Yi Ler
To Ang Yean Cheng
And our parents, families, friends and students.
Dedications
vii
Preface xi
Acknowledgement xiii
PRELIMINARY NOTES
01 CALCULATOR KEYS xvi
02 MODE AND SETTING xvii
02.1 Mode xvii
02.2 Setting xvii
A Fix xvii
B Radian xviii
03 FRACTION TO DECIMAL xviii
04 ERROR MESSAGES xviii
05 US MEVIOEMORYCLEARPR xix
06 ASSIGNMENT KEY (=) xix
07 COLON KEY (:) FOR MULTI STATEMENTS CALCULATION xx CHAPTER 1 INTRODUCTION TO NUMERICAL METHODS AND
ERRORS
1.0 INTRODUCTION 1
1.1 ROUND-OFF ERROR 4
1.2 TRUNCATION ERROR 5
1.3 ERROR ANALYSIS 7
EXERCISE 1 9
ANSWER 1 9
CHAPTER 2 NON-LINEAR EQUATIONS
2.0 INTRODUCTION 11
2.1 INTERMEDIATE VALUE THEOREM 11
2.2 BISECTION METHOD 12
2.3 SECANT METHOD 15
2.4 NEWTON-RAPHSON METHOD 17
2.5 FIXED POINT ITERATION METHOD 20