• Tidak ada hasil yang ditemukan

Instructions: Answer all ten [10] - EPrints USM

N/A
N/A
Protected

Academic year: 2024

Membagikan "Instructions: Answer all ten [10] - EPrints USM"

Copied!
5
0
0

Teks penuh

(1)

Second Semester Examination Academic Session 2007

l20}g

April 2008

MAA 102 - Calculus For Science Students ll [Kalkulus Untuk Pelajar Sains ItJ

Duration : 3 hours [Masa : 3

jam]

Please check that this examination paper consists of FIVE pages of printed material before

you

begin

the

examination.

[sila

pastikan

bahawa kertas

peperiksaan

inimengandungi

L\MA

muka

surat yang bercetak

sebelum

anda

memulakan pepeikiaan inll

Instructions: Answer all ten

[10] questions.

Aranan Jawab semua sepuluh [10]

soatan.l
(2)

l.

Determine whether the sequence

i l 4'*'+ ' - 3')

| is . monotonic and bounded.

14')

[8 marks]

2,

Test the convergence of the series:

(a)il

H 3'-'+l i(-,)*'#

(b) If z=.f(*,y) where/isdifferentiable, .r:,s*/ and !:s-r,show thar

(

Y\' -(Y\' =? o'

.

\ax ) lay ) 0s

0t

[10 marks]

(b)

J,

[10 marks]

The series,

. xt xt x' x' ttt

slnl=x--+--

3! 5! 7l 9l il!

converges

for

all

x.

Find the

first

six terms

of

a series for cos x. Hence, find the first six terms of a series

for

2 sin x cos x.

[5 marks]

Determine whether the

integral

el

\

Z+cosx

*

is convergent or divergent.

t

[5 marks]

5. (a)

Find the domain of the

tunction f (*,y,")--

4.

mass

Vis

6. The gas

law for a

fixed pressure

P

and volume

^AP

AV

that T _.:-mR.

AT

AT

m of

an ideal gas

at

absolute temperature T,

PV:

mRT,

where R

is the gas constant. Show

[6 marks]

...31-

1-h(xt +y'+z')

(3)

4"*r + 3n

monotonik dan terbatas.

i

n=l

(-rr.'

[8 markafi

[10 markahJ

I.

Tentulran sama adajujukan

2.

Uji penumpuan

siri:

(a)t'

P'=' @1

3"-l

+l

-.-F-

zJ',l

,ln +l o)

3.

Siri,

sinx= *-*t **t -t*t- 3! 5! 7t 9t llt ttt *...

'

menumpu bagi semua x. Dapatkan enam sebutan

pertama siri

kas x.

seterusnya, dapatkan enam sebutan pertama

siri

2 sin x kos x,

[5

markahJ

Tentukan sama ada

kamiran 1'*?t' * :x

menumpu atau mencapah.

[5

markahJ

(a) Cari domain bagi

fungsi f (x,y,z)=

(b) Jika ,=f(*,y),f

terbezakan,

r:s+ t dan l:s_t,tunjukkan

bahawa (Z\' -(Z\' \ax)

\ay

) =oz os

oz

0t'

[10 markahJ

?4^

gas ideal yang mempunyai berat tetap m pada suhu mutrak T, tekanan

P

dan

isipadu v adarah pv :

mRT,

i

aditan

pemarir-

gas. Tunjukkan

bahawa r {.{=*p.

AT

AT

[6

narkahJ

5.

(4)

7.

Over a certain region of space, the electrical

potential

trz is given by V (x, Y, z) = 5x2 -3xY + xYz .

(a) Find the

rate

of

change

of

the electrical potential

at

P(3,

4, 5) in

the direction of the vector v

: i

+

j -

k.

(b)

In which direction does

Z

decreases most rapidly at P and what is the rate of change in this direction?

[10 marks]

Find the points on the sphere x2 +

y'

+ zz

=25 where f (x,y,z)= x+2y-32

has its maximum and minimum values.

[14 marks]

Evaluate the integrals.

8.

9.

o ,lorj

00

II

. .1u

(b) | lz- dA,whercD

isthe region abovethe

line x * y

=

;"x

the circle

x'

+

v' =l

.

(a) I d* dy.

I

and inside

[2

marks]

10. (a)

Determine whether the differential equation

, * !

dJc

* y =2ry7 is

linear or

Bernoulli equation. Hence, find its general solution.

(b) Find the

orthogonal trajectories

of the family of curves y=(x+k)-t

where

ft

is an arbitrarv constant.

[20 marks]

x'+y'

...5/-

(5)

8.

Pada suatu rantau, keupoyaan

eletrik V

diberikan oleh

V(x,y,z)=5x2 -3xy+ry2.

(a)

Dapatkan kadar perubahan kcupayaan eletrik

pada p(3,

4, 5) datam

arahvektor v:i+j-k.

(b) Arah manakah

Y menyusut dengan cepatnya

pada p dan

aparrah

kadar perubahan di arah ini?

[10 markahJ

Dapatlran

titik-titik

di

sfera x'

+

y,

+ zz

=Z5,yang

mana

f (x,y,z)

=

x#2y -32

mempunyai nilai malcsimum dan minimum.

p4

markahl

Nilaikon kamiran.

+ ,!+v-f

(A)

00

II +: ,lr' * y'

dxdv.

o) I

. -1t,

I+

dA,

D

merupakan rantau

di

atas garis

x * y : I

dan didalam

;' x

bulatan x'

+ y2

=1.

p2

markahJ

Tentukan sama ada persamoan pembezaan,

* 4 * v =Zwz

adalah

dx

pers amaan I ine ar atau B ernoul I i. se terusnya, dap atkan perrye le s aian amnya.

Dapatkan

famili trajehori

ortorgonal bagi

lenglrung

y

=(x+k)-t , k

pemalar sebarangan.

[20 markahJ

-oooOooo-

(a)

o)

10.

Referensi

Dokumen terkait

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2009/2010 Jun 2010 MAA 102 – Calculus for Science Students II [Kalkulus untuk Pelajar Sains II]

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2007 12008 Jun 2008 MAT 101 - Calculus IKalkulus] Duration : 3 hours [Masa : 3 jam] Please check

UNIVERSITI SAINS MALAYSIA First Semester Examination 2012/2013 Academic Session January 2013 MAA111 Algebra for Science Students [Aljabar Untuk Pelajar Sains] Duration : 3 hours

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2011/2012 Ogos 2012 MAT 102 – Advanced Calculus [Kalkulus Lanjutan] Duration : 3 hours [Masa : 3

UNIVERSITI SAINS MALAYSIA First Semester Examination Academic Session 200812009 November 2008 MAT 363 - Statistical lnference [Pentaabi ran Statisti k] Duration : 3 hours [Masa : 3

UNIVERSITI SAINS MALAYSIA Second Semester Examination 2012/2013 Academic Session June 2013 MAT 102 – Advanced Calculus [Kalkulus Lanjutan] Duration : 3 hours [Masa : 3 jam]

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 200812009 Jun 2009 MAA 1OZ - Calculus for Science Students ll [Kalkulus untuk Pelajar Sains II]

UNIVERSITI SAINS MAIAYSIA Peperiksaan Kursus Semasa Guti Paniang Sidang Akademik 2007 I2OOB Jun 2008 MAT 222- Differential Equations ll [Persamaan Pemhezaan II] Duration:3 hours