UNIVERSITI SAINS MALAYSIA Second Semester Examination
Academic Session
200512006April/May 2006
MAT
161E- Elementary Statistics [Statistik Permulaan]
Duration :3 hours [Masa
: 3jam]
Please check that this examination
paperconsists
ofTHIRTEEN pages of
printedmaterial before you begin the
examination.[Sila
pastikanbahawa kertas
peperiksaanini mengandungiT|GA
BELAS muka suratyang bercetak sebelum anda
memulakanpeperiksaan inil.
lnstructions: Answer all four
[4]questions.
Aranan:. Jawab semua empat [4] soalanl.
67
...12-
IMAT 161EI
1.
(a)
Thefollowing
stem-and-leaf diagram gives the distances(in
thousandsof
mites) driven during the past year by a sample of driversin
acity
.2
0
I
2
aJ 4 5 6
369 285 516
8
I
105
Key:
2
tl z = 12
thousand miles(i)
Computethe
sample mean, median, and modefor
the dataon
distances driven.(ii)
Computethe
standard deviation and the interquartile range for these data.(iii)
Make a box-and-whiskerplot for
the data and describethe
shapeof
the distribution.(iv)
Betweenthe
standarddeviation and the interquartile
range,which
is preferable as a measure of the variation of the above data? Why?O) A
thief has stolen an automatic teller machine(ATM)
card. The card has a four-digit
personalidentification
nurnber(PnD. The thief knows that the first
twodigits
are2
and 6, but he does notknow
the last rwo digits. Thus, thePIN
could be any number from 2600 to 2699.(i)
How many possible numbers can the thief attempt for the last two digits?(iD
The automatic teller machinewill
not allow more than three unsuccessful attemptsto
enter thePIN. After
thethird wrong PlN,
the machine keeps the card and allows no further attempts. Find theprobability
that thethief
finds the conect PIN
within
the three attempts? (Assume that the thiefwill
not try the wrong PIN twice.)
(c) A
random sampleof
80lawyers
was selected, and they were askedif
they arein
favour
of
or against the death penalty. Thefollowing
table shows the distribution of their responses by age.Favours Neutral
l5
15 10 5
10 15
5
2
<
3s (v)
3s -
4s
(M)Age (yearc)
68
...13-
IMAT 161EI
(i) If
a lawyer is randomly selected from this sample, whatis
the probability that he/she opposes or is neutral about the death penalty?(ii)
Two lawyers are selected at random from thosein
favour the death penalty.Calculate the probability that one is less than 35 years old and the other is more than 35 years old.
Given that90%o of the lawyers in favour of the death penalty are males, as do 70o/o
of
those who oppose and3}o/o of those who are neutral.(iii)
What is the probability that a lawyer selected at random is a male?(iv)
Supposethat a lawyer
selectedat random is a male. What is
theprobability that he is in favour of the death penalty?
[00
marks]I.(a)
Gambarajah tangkai dan daun yang berilatt menunjukkanjarak
(dalam ribuan batu) yang dipandu oleh suatu sampel pemandu di sebuah bandaraya.105
Petunjuk: I /2 : 12 ribubatu
Hitung
min sampel, median sampel dan mod sampel bagi data mengenaijarakyang
dipandu.Hitung sisihan
piawai
danjulat
antaralanrtil
bagi data di atasBuat suatu
plot
kotak bagi data di atas dan perihalknn bentuk taburannya.Antara sisihan
piawai
danjulat
antaralanrtil,
sukatan apakah yang lebih dicenderungi sebagai sukatan seralwn bagi data di atas? Kenapa?(b) Seorang
pencuri
telah mencuri sekepinglad
mesinpelayan
automatik(AfM.
Kad tersebut
mempunyainombor
pengenalanperibadi (PIN) yang terdiri daripada
empatdigit.
Pencuri tersebut tahu bahawa duadigit
pertamaialah
2dan 6, tetapi ia tidak
tahu dua digityang terakhir.
Olehitu, PIN
l(ad tersebut mungkin sebarang nombor daripada 2600 sehingga 2699.(,
Berapalcah nombor yang mungkin dicuba oleh pencuri tersebut untuk dua digit yang terakhir?369 285 516
8
I
2 0
I
2 3 4 5 6
(, (i, (ii, (tt
...14-
69
OL -9/"'
[qmpou gglJ
i?low
uDwn4nll uo8uap nfnTastaqu
oMDrIDq uo11m18uotoqat1qo4ody 'pppl
SuotoasqDIDpo 2lDlxDr prDcas
qlftdtp Suot
won8ad Suotoas ol^DtlDqunlppuv 6!)
iplDlal Suotoas qDppD IDI^DI
DrDcas
Wfidlp 8uo(. uor8ad tuotoas
DltDtpq
uoryo4tuotoqatlqmlodV (ttl
'?yppl qeppD lo4nau 8uo,( uo8uo1q opodltop
%0t
uaptyDpl qpppD
nfn4as 4op17 8uo,( uo8uo1ml opodltop %o0l 't2plal qoppDttvw
uDurnlnquotuap
nfn4astaqtuo,( wor8ad
opodltnp 0/006 DMDqDq WqD@llCI'unqq
gg opodltop Wqalrruaruaq Qot Suotoas
uDpunqq gg opodltop
8uotru1 rnwnraq Suptoas DilDqDq uoqm18uotoqat13un7ry1'qDu
uuwnyru4 uo8uap nfn1asnq8uo,( wor8ad uo8uo1o4 opodqtop yolvtor DrD?as Wrydtp wor8ad Suato
Dne (tt)
illpw uourupq
mua8uarupqnau nap
uDttt aDwrulrul uo8uap ntn4as yapg nt DlADqDq uoqmlSuonqa4qulodn
'rut Tadwos opodltop IDMDI DtDcasql@tp
wpr8ad Suotoasm117
(t)Z
I t
SI OI
I
OI
st
9T 'o.
(unqot) Jnuln
(fi
1ot7na1i7 n{nps)pptJ n[nps
sDIDq wry4Dw
'rnutn umlrpsDpraq
mpnw sopq
unplput uo"mqq uo4ynfunuaw yafiraq&uo,t
pnpal' 'ltpw upwralnq
uo&uap nfnTasnqyDpg nzp
nfnuasnqmpaw opo
Dwps otuoTtpayaraw uop tgpdlp wor8ad Suoto 0g
yDMDI Tadwos n1ong (c)('Iml
onp qDps 8uo,( 1t114 Dqn"uaw uo4p yopq Dt DA4DqDq umlqopuy)'uooqnctad ot17 rptutas aDlop pqaq Suor(
7114 Todopuaw ruqasraluncuad
DA'rDqDq uoryotltuotoqa4uo4todoq '8o7 uooqncnd
Suotoqas umpDuaqutaut4pptl uop otupo4
uodwt,(uau uDzlD ruqasratulsau
'qolDs Suor( ot17a4 7114 sodaryas'Md
ntnspwata ulDIDp 1o3o? 3uo,( uooqnc.odoEU opodltop qnal
uvyrDuaqwawWpg 4ltnuono
uo,fu1adulsary
(g)lg lg I rvhrl
5 IMAT 161E]
2.(a)
The discrete random variableXhas a probability function givenby
P(X=x)=
1<x<5 x=6
otherwise
(i)
Determine the valueof
C, a constant.(ii) Find
P(x ssl x, +).
(iii)
Find E(,Y) and showthatYar(X):
1.6553(iv) Approximate the probability that a sample of 100
independent observationsofXhas
a total sum of less than 200.O) A history
teacher givesa
test consistingof
50 multiple-choice questions. Each question hasfour
choicesof which only
oneis
correct.. The scoring includes a penaltyfor
guessing; each correct answeris worth I point,
eachwrong
answercosts 1/2 point and an unanswered question gets 0
point.
For example,if
a student answers35
questions correctly,8
questionsincorrectly,
and doesnot
answer 7 questions, the total score for the studentwill
be 35(1)+ 8(-l/2)
+ 7(0):
31.(i)
Suppose a student has no idea what the correct answer to a question is.By
guessingthe
answer, doeshe
increaseor
decreasehis
expected score?Explain.
Suppose
a
student answers38
questions correctly and guesseson
theother
12 questions by randomly choosing one of the four answers for each.(ii)
What is the probability that the studentwill
score more than 40 points?(iii)
What is his expected score?(c)
The numberof
carsarriving
at apetrol
stationin
a periodof r
minutes may be assumed to have a Poisson distribution with meanZ.
20
What
is
theprobability
that fewer than6
carswill
arrivein a
10 minute period?Suppose a car has
just
arrived at the petrol station. What is the probability thatit will
be at least 5 minutes before the next car arrives?Approximate the probability that more than
24
carswill
arrive in an hour.[100 marks]
?1
(r)' ttj
C 0
(D (iD (iiD
.../6-
IMAT 161EI
2.(a)
Pembolehubahrawak
dislcritX
mempunyaifungsi
kebarangknlian seperti yang berilan:P(x ='={
[r)' \2)
C 0
l<-r<5 x=6
di
tempatlain
(,
Tentulrnnnilai
C, suatu pemalar.(i,
DapatkanP(x <sl x >
+).(ii, Dapatkan
E(X) dan tunjul<kan bahawa Var(X)=
1.6553(iv) Dapatkan
kebarangkalianhampiran
bahawasuatu
sampelrawak
100 cerapan tak bersandarX
mempunyaijumlah
kurang daripada 200.(b) Seorang
guru sejarah
memberisuatu ujian yang terdiri daripada 50
soalanpilihan
berganda. Setiap soalan mempunyai empatpilihan jawapan yang
mana hanya satu sahaja adalah betul, Pemarkahanujian
termasuk suatupenalti
untuk penelraan; setiapjawapan
betulbernilai I marlah,
setiapjawapan
salahditolak
%
marlah
dan soalan yangtidak
dijawab mendapat 0 marknh. Contohnya, jilca seorangpelajar
menjawab 35 soalan dengan betul, 8 soalan dijawab salah dan 7soalan tidak dijawab, maka
jumlah
markah yang akandiperolehnya ialah 35(l)
+8(-I/2) + 7(0):31.
O
Andaikan seorangpelajar tidak
tahu langsung jawapanyang
betul bagi suatu soalan. Dengan meneka jawapannya, adaknhia
meningkatknn atau menurunkan markah yang dijangkn? Jelaskan jawapan anda.Andailcan seorang
pelajar
menjawab 38 soalan dengan betul dan menekn pada 12 soalanyang lain
denganmemilih
secararawak satu daripada
empatpilihan
jawapan bagi setiap satu.(i, Apakah
kebarangkalian bahawapelajar
tersebutaknn
mendapat lebih daripada 40 marknh?(ii,
Berapakah markahyangdijanglu
diperolehnya?(c)
Bilangan keretayang tiba di
sebuah stesen minyakdalm
suatu tempoht
minit, dapat diandaiknn tertabur secaraPa'
t$son aengan'
mtn' _. lt
(i)
Apaknh kebarangknlian bahawa kurang daripada 6 buah lcereta alean tiba dalam sudtu tempohI0
minit?72
...17-
IMAT 161EI
(i, Andaiknn
sebuahkereta baru sahaja tiba di
stesenminyak
tersebut.Apaknh kebarangkalian bahawa selatrang-kurangnya 5 minit akan berlalu sebelum kereta seterusnya tiba?
(ii, Dapatknn
kebarangkalianhampiran bahawa lebih daripada 24
buah kereta akan tiba dalam satu jam.fl00
markahJ3.(a) A
bag contains a very large number of marbles, identical exceptfor
their colour.Of
these, an unknownproportionp
are blue. Suppose you are required to test thenull
hypothesis .F/o ip
= 0.2 against the alternativeH,
:p
<0.2. To
perform the test, you are to take a random sampleof
100 marbles and noteX,
thenumber of
blue marbles in the sample.
(i) If the
significancelevel is
10%, determine whether thenull
hypothesis should be acceptedwhen
X=
15.(ii) If the
significancelevel is to be
as close as possibleto
5o/o,find
the rejection region in the formof
0 <X ( c,
where a is an integer.(iii)
Calculate the powerof
the test when the rejection regionis
0 <X <I4,
and P = 0'1
(b)
A drug
manufacturer produces250-milligram
capsulesof a new antibiotic. A random
sampleis
selected,ffid the
amountof antibiotic in
each capsule is determined. The results are as follows (in milligrams):7
(D
252, 246, 242, 250, 255, 258, 250, 252, 250,
258.\x=2,513 Z*' =631,74I
Find
a 95% confrdenceinterval
forp,
the mean amountof
antibiotic per capsule.Determine the
minimum
numberof
capsulesthat
you needto
sampleif
you
would like
to be 99%o confident that an estimateof
the meanarlount
of antibiotic per capsule iswithin I
milligram of the true mean.Over a period of months, the manufacturer found that
of
a sampleof
150 capsules,18
capsuleshave
unacceptableamounts of the
antibiotic.Calculate an approximate 95o/o confidence
interval for
the proportionof
capsules having an acceptable amount of the antibiotic.
(ii)
(iiD
(c) Attitude toward mathematics was measured for
two
different groups. The attitude scores rangefrom 0 to 80 with the higher
scoresindicating a more
positive attitude.One group
consistedof
Elementary Education majors,ffid the
othergoup
consisted of majors from several other areas. The data are shown below:73
...t8-
8
IMAT 161EI
Elementary Education
(l)
Non-Elementary Education (2)
75 110
42.7 49.3
15.5
t7.0
(i)
Assuming a coflrmon population variance, obtain a pooled estimateof
this variance.(ii)
Constructa
95o/o confidenceinterval for
p,- /rz,
the difference betweenthe mean attitude
scoresof
Elementary Educationmajors and
Non- Elementary Education maj ors.(iii) Using the p-value
method, test that Non-Elementary Education majors havea more positive
attitude toward mathematicsthan the
Elementary Education majors at the the 5% significance level.[100 marks]
3.(a)
Sebuah beg mengandungi suatu bilangan besarguli
yang serupa tetapi berbeza warna.Daripada
bilanganini,
suatu kndaranp
yang tidak diketahui adalahguli
warna biru. Andaikan andaperlu
menguji hipotesisnol
H o :p
=0.2
berlawanan hipotesisalternatif H,
:p
< 0.2.Bagi
menjalankan ujian, andaperlu
mengambil suatu sampelrawak
100biji guli
dan mencatitnilai X, iaitu
bilanganguli biru
dalam sampel tersebut.Jilra aras keertian
ujian ialah
10%o, tentuknn sama ada hipotesis nolpatut diterimaapabilaX=
15.Jika aras keertian ujian
dikehendaki sedekatmungkin dengan
594,dapatknn kawasan penolakan dalam
bentuk
0 <X <a, a ialah
suatu integer.Hitung kuasa ujian apabila
kawasanpenolalmn ialah 0<X <14,
danP=0.1
(b) Sebuah
syarikat pengeluar ubat
menghasilkan sejenisantibiotik baru
dalambentuk knpsul-kapsul
250milligram.
Suatu sampel rawakdipilih dan
amaunantibiotik dalam
setiap kapsul ditentukan.Hasilnya ialah
sepertiyang
berikut (dalammilligram):
252, 246, 242, 250, 255, 258, 250, 252, 250,
258.lx
=2,513 Zr' =
631,741(, Dapatkan suatu selang keyakinan 95% bagi p , iaitu min
amaunantibiotik di dalam setiap kapsul yang dihasilkan.
(,
(it)
74
.../9-
IMAT 161EI
(i,
Tentukanbilangan
kapsulyang
minimum yangperlu
disampelkanjilw
anda ingin 99% yakin bahawa suatu anggaran bagi min amaun
antibiotik di
dalam setiap lcapsul adalah dalam sekitarI milligram
daripada minyang sebenar.
(iit)
Dalam suatu tempoh beberapa bulan, pengeluar ubat tersebut mendapati bahawa daripada suatu sampel 150biji
lcapsul, 18biji
mempunyai amaunantibiotik yang tidak
dapat diterima. Dapatkan suatu selang lcEtakinan 95% hampiranbagi
lmdaran lcnpsulyang
mempunyai amaunantibiotik yang
dapat diterima.G) Stkap terhadap Matematik diulatr bagi dua latmpulan pelajar yang berbeza.
Julat
bagi slcor sikap adalah daripada 0 sehingga 80 dengan skortinggi
menandakansikap yang lebih positif. Satu htmpulan terdiri daripada pelajar
dalam penglrhususan Pendidiknn Asasdan
latmpulanyang satu lagi terdiri
daripadapelajar
dalam pengkhususan beberapadisiplin lain.
Datayang
diperoleh ialah seperti yang berikut:Pendidikan Asas
(l)
Bulcan Pendidikan Asas (2)
75
II0
42.749.3t 5.5 17.0
Dengan
andaian
bahawavarians
kedua-duapopulasi adalah
sepunya, dapatlrnn anggaran tergembeleng bagi varians tersebut.Bina
suatu selang keyakinan95% bagi l\- pz, iaitu
perbezaan antara minbagi
skor siknp pelajar pengkhususan Pendidiknn Asas dan min bagi skorpelajar
bukan pengkhususan Pendidikan Asas.Dengan
menggunakankaedah nilai-p, uji bahawa pelajar
bulcanpengkhususan
Pendidikan Asas
mempunyaisilap yang lebih positif terhadap Matematik daripada pelajar
pengkhususan Pendidilcan Asas pada aras keertian 5%o.fl00
markahJ4. (a) (D Explain why
nonempty,mutually
exclusive eventsA
andB must
be dependent.(iD
Showthat if A
andB
are independent events, thenA
andB
are alsoindependent.
(b) In
a2003 survey conducted in a city, respondents answered the question "What isthe
combined incomeof your
household?"The
responses appearin the
table below(r)
(i, (ii,
75
.../10.
IMAT 161EI
Household Income %o of Households
Under RM20,000
RM20,000 to less than RM40,000 RM40,000 to less than RM60,000 RM60.000 and over
25 43 22 10
Assume that the above results hold true for the entire population
in
thecity. In
arecent
poll of
200 householdsin
the samecity,
39 had atotal
incomeof
underRM20,000, 83
hadan
income betweenRM20,000
andRM40,000, 45
had an income between RM40,000to
less than RM60,000 and the rest had an incomeover RM60,000. Test at the
5o/olevel of significance whether the
current percentages of the city's households in each income category are the same now as they were in 2003.(c)
Thefollowing
table lists the ages(in
years)
and the prices(in
thousandsof RM)
for a sample of cars of the same model.Age (x years)
Prt". (RM y
000)8
40
11
30 4 95
2 130
6 80
)
90
13 15
lx
=49 ly
=a80 lxz = 435 Zy' = 43,150 Zry
= 2,415(i)
Find the least square regression line.(ii)
Explain the meaning of they-intercept and the slope of the regression line.(iii)
Calculater
and rz and explain theirmeaning.(iv)
Test ata =.0twhether p
is negative.[100 marks]
(a) (l
Terangl<an kenapaperistiwa A
danperistiwa B yang tak
kosong dans aling el<s Hus if s emes tinya s aling b ers andaran.
(i, Tunjukkan
bahawajika A dan B adalah peristiwa-peristiwa
saling bersandaran, maknA
dan Eiuga
adalah saling bersandaran.(b)
Dalam
suatu tinjauanpada
tahun 2003yang
dijalanlcandi
sebuah bandaraya, responden menjawabsoalan
"Berapakahjumlah pendapatan
keluarga anda? ".Jawapanyang diberi
ditunjul*an
dalam jadual yang berikut:Pendapatan keluarga o% keluarga
Kurang daripada RM2 0,000
RM20,000 hingga kurang daripada kM40,000 RM40,000 hingga latrang daripada RM60,000 RM60,000 dan lebih
25 43 22
I0
10
76
.../,11-
IMAT 161E]
Andaikan hasil di atas adalah benar bagi seluruh populasi
di
bandaraya tersebut.Dalam
suatutinjauan terkini
terhadap200 buah
keluargadi
bandaraya yangsama, 39 buah keluarga
mempunyaijumlah pendapatan larang
daripadaRM20,000, 83 buah keluarga mempunyai
jumlah
pendapatan antara RM20,000dan RM40,000, 45 buah keluarga
mempunyaijumlah pendapatan
antara RM40,000 dan RM60,000 danyang
selebihnya mempunyaijumlah
pendapatanlebih daripada RM60,000. Uji pada aras keertian
50%sama ada
peratusan semasa keluargadi
bandaraya tersebut dalam setiap kntegori pendapatan adalah sama seperti dalam tahun 2003.(c)
Jadual yangberilal
menyenarailcan usia (dalam tahun) dan harga (dalam ribuan RM) bagi suatu sampel kereta yang sama model.Usia (x tahun)
H"rga(RIttyW
8 40
II
30 4 95
2 130
6 80
5 90
13 15
\x
=49 ly = 480 lxz
=435 Zy'
=43,150 Zry
= 2,415(,
Dapatlmn garis regresi lansa dua terkecil.(i,
Terangknn malvta pintasan-y dan kecerunan garis regresi yang diperoleh.(iiil
Hitungnilai r
dannilai r'
dan teranglcan malcnanilai
masing-masing.(iu)
Ujipada a =.01
sama adap
adalah negatif.[100 marlcahJ
11
77
...112-
12 [MAT
161EJFORMT]LA
i=-
S-=
Zx
n
Z*'
sr'= (n., -l)s.2
+(n, -l)s r' nrln,-2
E.')'
n
X+Y
nx+ny
n-l
Confidence Interval
X
v
L-! La/2
o
--- in
(X -Y ) ! zo,r^lL+u G.,
Y\,. n,
+,
,s
-"d/z
!n
l-(X -7 ) tto,,
trXrotz b,(r- i,)
Test Statistics
z X-p
o t-
an
X-p
/,= (f,,- f,r)-(n,- pr)
T=r p,(1-
p.)
_pr(l- p, )
T
6 -h-@, - ar)
lor'
It), ov-
rl- T
\n*
-nY6 -n-Q', - t'r)
s
r
ln
7-pa
z- z- (b,-Py)-(n,-nr)
f-
-,( t /) p\t-p)l-+-l
\'"
nY)
G
s,.r T_,-=Lt, , s! b-n)' E=nP
-_b-F,
.tb
.r.( t t)
Dp - ln- l-+-
n,, t/ l|?9
...113-
13
IMAT 161EI
Regression and Correlation
Sxy
=Z*y - (I')(Iv)
sr= -b F-
C =-1{ s"".W
-oooOooo-
80