; ,_
,! "
ý 'ý' ý ýý ýýl
ý _, , n, _..
._ý_
/i1
ý ,.
a ý ý,MATHEMATICAL FORMULAE
Uni QA
41
T594 2016
NG, S. N. SZE & K. L. CHIEW
u"t nillutlla; 1, I: titilfllll'r4?
. A4a(je[I11i(
l \'(ý'f-IZý11'j `";:, 1,, 1ici;;
's-t'
P KMIDMOT MOKLUMOT OKODEMIK
UN: npS
umýiuii
1000276895u lull
MATHEMATICAL FORMULAE
BOOK
_ ý-ý"'
C o. nplim
ý' from
(
. ýýPcr<yt;
71*n ý rmq-S I
MATHEMATICAL
FoivIuLaE
BOOK
W. K. TIONG, S. N. SZE & K. L. CHIEW
Universiti Malaysia Sarawak Kota Samarahan
0 W. K. Tiong, S. N. Sze & K. L Chiew, 2016
All rights reserved. No part of this publication may be
reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the publisher.
Published in Malaysia by UNIMAS Publisher,
Universiti Malaysia Sarawak.
94300 Kota Samarahan, Sarawak, Malaysia.
Printed in Malaysia by
Percetakan Nasional Malaysia Berhad, Jalan Tun Abang Haji Openg,
93554 Kuching,
Sarawak, Malaysia.
Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Tiong, W. K.
MATHEMATICAL FORMULAE BOOK / W. K. TIONG, S. N. SZE & K. L. CHIEW.
ISBN 978-967-2008-11-8
1. Mathematics-Formulae. 2. Mathematic.
1. Sze, S. N. II. Chiew, K. I. II. Judul.
510 v
ýýI,
1
ýýýý
^,,
Pusat Khidmat 1"laivueilat Akademik l? tilý'F: Iiýt't't ýtAl.. Ati"tilA ti; 1RANtiAK
Contents
PREFACE ALGEBRA
TRIGONOMETRY
HYPERBOLIC FUNCTIONS GEOMETRY
GRAPHS OF COMMON FUNCTIONS LOGIC
SET
RULES OF INFERENCE
DIFFERENTIATION & DERIVATIVES INTEGRATION & INTEGRALS
SERIES
VECTORS
MULTIPLE INTEGRALS LINEAR ALGEBRA
DIFFERENTIAL & DIFFERENCE EQUATIONS LAPLACE TRANSFORMS
FOURIER ANALYSIS
IX
1
4
8 10
13 14
16 18
20 21
23 26
30 34
37 39 41
NUMERICAL METHODS
OPERATIONS RESEARCH
PROBABILITY & STATISTICS
44
50 53
vi
PREFACE
The "Mathematical Formulae Book" is a compilation of useful and impor- tant mathematical formulae, designed specially for undergraduate students.
Detailed explanations of each formula are not included and thus, students should not replace their actual textbook with this book. The mathematical formulae book were selected from various topics in undergraduate mathe- matics courses available in major textbooks related to:
" Discrete Mathematics
" Linear Algebra
" Statistics
" Calculus
" Multivariable Calculus
" Vector Calculus
" Differential Equations
" Numerical Methods
" Operational Research
Therefore, undergraduate as well as postgraduate students can use this book as a quick reference for formulae at anytime even during examina- tions.
Though this book has been revised several times, there are obviously many rooms for improvement. We welcome any feedbacks, comments and suggestions in the hope to increase the quality of this book.
W. K. Tiong S. N. Sze K. L. Chiew
March 2016
vii
ALGEBRA
ýGýjý.
ý; ýli - ýýý.
=_C.
_, ýý
u(b+c) = ub+uc, a cad+bc
bd bd
n+c nC
b bb
a
a ýl (I (I _x=-. bý bc ý/
fill = I.
ant
a+n -+t an
'rn , 'rr - 'rrr rn
(am)n
_ amn = ((Irr ym
a Va-)'" a-n =1 ni'
(ab)' = ab", al/n =Vn.
b ýh.
ý
I
(al n a1!
bI b"
-I bi -- - b"
(a + b) 2= a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2, (a + b)(a - b) = a2 -b2 ,
(a + b)(a2 - ab + b2) = a3 + b3, (a - b)(a2 + ab + b2) = a3 - bs
4- b12
+c-
b'-'
- 2a
-.
4aý MT .
-b f b2
- 4ac If ax` + bx + c= U, then x=
inmTn
2a
For any positive base aý1, the expression log. x=y means ay = x.
Iogr .Z I11ýý
1
a (-ry) lugQ 2n
h";
"Wy)
a ioga i f, (1r
I ýh a
= In x;
= 0;
= 1;
log. x+ log y;
=n log, x;
= log. x- log. y;
= x;
log. x/ log. b, log. x" logt a.
c
.Q
U.
ß
CL
ý+ "ý ý++
öQ+ö -6 "=
au -+
p üH
+. _.
r^ .ý. "a)
.
ßNýUO
acä+ `` y+
O++öiF.
E _Z m4 +üýa
ýQ+ "y QQwN+
tn aQ zý
mC al ý, C
M (1) ü II G+ý II
. _ý
(A wyu- tp +
CL x
yC+ .
ý. +
Qy`yy
'" + a, _fu"-N
_ID ýö
WAW II
-uü+..
ö
c=. =H
rv fp ir Ný+
ý rv ý
.. p C3 "
ÖGäaHG+
f0 +
t0 f0
.ö c0 H
c yý Fi N LO +Ný.. i .p
.-d""N" Zý
fp y ýi
N
ýNMC
o ýj UUU
a"" ý
ý""
L
H
TRIGONOMETRY
7r radians = 180°. 1 rad = 1800
10 _ý rad.
7r 180
H radians ýin 0 (. ()"0 t al 10 ()° 0010
300 n/6 1/2 f/2 f/3
15° n/4 f /2 vý2-/2 1
t; 0° 7r/3 f/2 1/2 f
')0° 7f/2 10
I3
The Law of Sines
sin A sin B sin C
a6c
A
vu
The Law of Cosines
a2 = b2 + c2 - 2bc cos A b2 = a2 + c2 - 2ac cos B c2 = a2 + b2 - 2ab cos C
b
Pusat Khidmat Maklumat Akademik i; NlX'FR! +! TI NtALA1'SIA iAR N'VAK
.ý. ýý .ý
r= sin x
= cosec x tan x
t' = sec x:
n2 ir ýý
.
n. 2; n
y= cot x
2. n
Trigonometric Identities
ý, iu(( 11
t, ulo sec a cosec (l -
4 "`i1ý COS (1 sill (1,
OS (1 cot a =-
sin (/
, in(90° - a) = cos a (sin 90° + a).
()s(90° - a) = sina -cos(90° +a).
rui(90° - a) cot a,
, in( -B) - sin B, Cos 0.
tan(-9) __ -tanH,
i +cos2a - 1,
tan 2a= sec2 a,
ý ýý
1- c()t' u c(). ri"'n.
.ý.. ý..
u- b) - , illui( '11, U, illll.
ýýýý! nfb) = cosucosh: F siuclsiub.
r 1u nfb) -- tan u± tan h I= tali n tan h'
ýý -I IFITTMI
sin 2u - 2sillacosa,
cos 2a = Cos2 a- sill 2 a.
=2 cos2 a-1,
=1 -2sill 2a, tan 2a 2taiia
1- ttilll (1
Sum to Product Formulae
sin a± sire b- 2 sin a2±b) +
cos ab
C2
coca + cos b- 2 cos ab
cos alb,
cosa - nosh -- -2 sin
Ca+b)
sinCa
b),
2 sin a cos b sin(a + b) + sin(a - b).
2 cos a cos b= cos(a - b) + cos(a + b).
2 cos a sin b sin(a + b) - sin(a - b).
2 sin a sin b cos(a - b) - cos(a + b).
tan a tan b cos(a - b) - cos(a + b) -
("()s((/ - h) + ýuti(a + h) .
HYPERBOLIC FUNCTIONS
ý. ,
e-r 2
. ý"ý ! i. r -
cosh x' sinh z t, uih .r-
cosh x*
e. = - e-r
(I + f-r
1 tanh2 x=
)rlt '. r -1= ý
-iuh 2x = (,,., h 2x = ý ýsh2 X =
er + e-. r
cosh z
cosech x=
cothx -
2 1
sinh r' 1
tanhr'
1.
sech 2r,
cosech 2r,
2 Binh r cosh r,
cosh2 r+ sinh2 r, cosh 2r +1
2
, inh2 x= cosh 2x -1 2
sinh-1 (ý)
log,,
2a
Cosh-1 -= loge
tanh-1
\n/
. c+ X +a2 a
. Z+ I2-a2
a x>a,
1 l
1ogr (a+ý
IrI < a.
2 a-. ý '
a
a
sech -lx = cosh-1
1
cosech -1 x= Binh-1 1, coth-I x= tanh-,1
xxx
Graphs of Hyperbolic Functions
Y
y=sinhx
X
r
y=coshx
X
y=tanhx
Yý
y= sech x
-
x
Y
y= cosech x
y= coth. r
X
X
X
GEOMETRY
HIE93LEMMM
Triangle
1-1 hh 1
uL. in H .,.,
Circle
.4= 7rr2
(' ý! -ý
Sector of Circle
1 rH: , s= rH
Sphere
A= -1; rý I=ý -; r3 3
Cylinder
A= 2-r - 27rrh V= irr2h
Cone
r` t h'
V= 3ýrr2h
il
t---I
h
h
" The distance between (xi, yl, zl) and (x2, y2, z2) is
(xl - x2)2 + (yl - Y2)2 + (zl - z2)2.
" The area of a triangle with vertices (x1, yl ), (x2, Y2) and (X3, Y3) in the (x. y) plane is
1 2
,ý TTf1Iff ,
XI X2 X3
yi y2 Y3 111
General formula : ax + by +c=0.
Slope m and intercept h. y= mx + h.
Intercepts g and h: x+h=1.
9
Slope m and point (xi, yi) y- yi = 111(x -x]).
Two points (x1, yi), (x2iy2) y-Y1
_x- xl
y2-Y1 x2-xl
Angle 0 between two lines tan O= ml - m2 1+ mime
ý
Standard form : (x
- h)2 + (y
- k)2 = r' General form : x2 + y2 + 2gx +2fy+c=0
Radius of a circle r= Vl'f-2 + g2 -c
Parametric form :x=a+r cos t, y=b+r sin t
m
".. ýý
11)(y - A)
!ik'_ 4p(: r - h) F(h p. k) or F(h. k+p) ý
Iý -h)"
+ (y-1,
a>6
a2 62
F(hfc, k) or F(h, kfc)
ý r-mT
General formula: iii - blu -- (l - n.
GRAPHS OF COMMON FUNCTIONS
Y}
y= -x
y=X
X
v= -X3
y=x;;X
y=logx
X ____. --- ---
Y= -logx
y
y=es
y=-x2
y= -1/x
y=x2
Y= vx
y=-, r
X
X
y=1/x
-- ---... X
y=e`
x
y=-e-F ýý y--
Truth Tables
p
T F
/) 9
TT TF
FT FF
,N
F
T
P, ý-9
F T
T F
J) (j
TT TF
FT FF
l) 9
TT TF
FT FF
ýý
T F T
T
Equivalences Laws Name
pAT -- p Identity laws
pvF -p pvT -T Domination laws
pAF F
Idempotent laws pVp p
pAp p
Commutative laws pvq
pAq=
qvp qAp hn9
T F
F F
p -+q
ie negation iaw 11 I
(p V q) VrpV (q V r) Associative laws
(pAg)ArpA(qAr)
pV (q A r) (p V q) A (p V r) Distributive laws
pA(gV r) (pAg)V (pAr)
De Morgan's laws -(p A q) ýp V -q -(pVq)-, pA-q
pV (p A q) p Absorption laws
pA(pVq)p
Negation laws pV -p = T pA -p F
ý" .... ý
L1I
pi4-'pV9
p-4 9ýQ-+ ýp
pV4ýp--* q
pn4-(p--* ý4) ý(p-+ 9)=pný4)
(pý4)A (p-4 r)p-ý (9A (pr)A (9--* r)(pV4)-*f
(p4)V (p-4 r)p-ý (4Vr) (p ý r) V (4 -4 r) = (p n 4) -+ r
11111 i iffill 11 111
3Wj-j; lro M@UHU'TfFoll&lF-lM=nt
pH4(pH4)n(4ýp) pH4-pH-'9
pH4=(pn4)U(-'pn-, Q)
I -(p t-a q) °p 44 -4
SET
nu
" The universal set is denoted by 1 The empty set or null set is denoted by 0, or { }. The complement of .4 is denoted by . 1` or J.
The union of A and B is denoted by .4UB. The intersection of .4 and B is denoted by
.4nB.
"A ii B means A is a subset of B. Two sets A, B are equal, .4=B if and only if ACBandBCA.
" If .1B and A B, then we write ACB and A is said to be proper subset of A.
ý =77 :ý
N= the set of natural numbers to, 1, '2.3.... }
Z= the set of integers {... , -3, -( 2, -1,0,1,2,3, ... }l Q= the set of rational numbers {Pp, qEZ, q#0}
q JJJ
R= the set of real numbers, i. e. all numbers expressible as finite or infinite decimal expressions
C= the set of complex numbers {. r 1ý ii/ !
. r. ý/ Fß}
For any sets A. B, C and X,
JA uBI = IAI +IBI - JAnBl,
lAuBuCI = IAI+IBI+ICI-lAnBl-lAnCi-lBnCI +JA nBn Cl,
JA x BI = IAJIBI,
IP(X)i = 2" where n= IXI.
Set Identities
Au0=A
Identity laws
AnU=A AuU=U
Domination laws
An0=0 AUA=A Idempotent laws
AnA=A
AU B= BUA Commutative laws
AnB=BnA
AU (B U C) _ (A U B) UC Associative laws
An (BnC)=(AnB)nC
An(BUC)=(AnB)U(AnC)
Distributive laws AU (B n C) _ (A U B) n (A U C)
' (A U B)° = A° n BC
s laws De Morgan
(A n B)c = Ac u B", AU (A n B) = A
Absorption laws
An (A UB) =A
AUA'=U
Complement laws
An A` =0
(A")"=A