• Tidak ada hasil yang ditemukan

Mathematical Formulae Book (24pgs).pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "Mathematical Formulae Book (24pgs).pdf"

Copied!
24
0
0

Teks penuh

(1)

; ,_

,! "

ý 'ý' ý ýý ýýl

ý _, , n, _..

._ý_

/i1

ý ,.

a ý ý,

MATHEMATICAL FORMULAE

Uni QA

41

T594 2016

NG, S. N. SZE & K. L. CHIEW

(2)

u"t nillutlla; 1, I: titilfllll'r4?

. A4a(je[I11i(

l \'(ý'f-IZý11'j `";:, 1,, 1ici;;

's-t'

P KMIDMOT MOKLUMOT OKODEMIK

UN: npS

umýiuii

1000276895

u lull

MATHEMATICAL FORMULAE

BOOK

_ ý-ý"'

C o. nplim

ý' from

(

. ýý

Pcr<yt;

71*n ý rmq-S I

(3)

MATHEMATICAL

FoivIuLaE

BOOK

W. K. TIONG, S. N. SZE & K. L. CHIEW

Universiti Malaysia Sarawak Kota Samarahan

(4)

0 W. K. Tiong, S. N. Sze & K. L Chiew, 2016

All rights reserved. No part of this publication may be

reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise, without the prior permission of the publisher.

Published in Malaysia by UNIMAS Publisher,

Universiti Malaysia Sarawak.

94300 Kota Samarahan, Sarawak, Malaysia.

Printed in Malaysia by

Percetakan Nasional Malaysia Berhad, Jalan Tun Abang Haji Openg,

93554 Kuching,

Sarawak, Malaysia.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Tiong, W. K.

MATHEMATICAL FORMULAE BOOK / W. K. TIONG, S. N. SZE & K. L. CHIEW.

ISBN 978-967-2008-11-8

1. Mathematics-Formulae. 2. Mathematic.

1. Sze, S. N. II. Chiew, K. I. II. Judul.

510 v

ýýI,

1

ýýýý

^,,

(5)

Pusat Khidmat 1"laivueilat Akademik l? tilý'F: Iiýt't't ýtAl.. Ati"tilA ti; 1RANtiAK

Contents

PREFACE ALGEBRA

TRIGONOMETRY

HYPERBOLIC FUNCTIONS GEOMETRY

GRAPHS OF COMMON FUNCTIONS LOGIC

SET

RULES OF INFERENCE

DIFFERENTIATION & DERIVATIVES INTEGRATION & INTEGRALS

SERIES

VECTORS

MULTIPLE INTEGRALS LINEAR ALGEBRA

DIFFERENTIAL & DIFFERENCE EQUATIONS LAPLACE TRANSFORMS

FOURIER ANALYSIS

IX

1

4

8 10

13 14

16 18

20 21

23 26

30 34

37 39 41

(6)

NUMERICAL METHODS

OPERATIONS RESEARCH

PROBABILITY & STATISTICS

44

50 53

vi

(7)

PREFACE

The "Mathematical Formulae Book" is a compilation of useful and impor- tant mathematical formulae, designed specially for undergraduate students.

Detailed explanations of each formula are not included and thus, students should not replace their actual textbook with this book. The mathematical formulae book were selected from various topics in undergraduate mathe- matics courses available in major textbooks related to:

" Discrete Mathematics

" Linear Algebra

" Statistics

" Calculus

" Multivariable Calculus

" Vector Calculus

" Differential Equations

" Numerical Methods

" Operational Research

Therefore, undergraduate as well as postgraduate students can use this book as a quick reference for formulae at anytime even during examina- tions.

Though this book has been revised several times, there are obviously many rooms for improvement. We welcome any feedbacks, comments and suggestions in the hope to increase the quality of this book.

W. K. Tiong S. N. Sze K. L. Chiew

March 2016

vii

(8)

ALGEBRA

ýGýjý.

ý; ýli - ýýý.

=_C.

_, ýý

u(b+c) = ub+uc, a cad+bc

bd bd

n+c nC

b bb

a

a ýl (I (I _x=-. bc ý/

fill = I.

ant

a+n -+t an

'rn , 'rr - 'rrr rn

(am)n

_ amn = ((Irr ym

a Va-)'" a-n =1 ni'

(ab)' = ab", al/n =Vn.

b ýh.

ý

I

(al n a1!

bI b"

-I bi -- - b"

(a + b) 2= a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2, (a + b)(a - b) = a2 -b2 ,

(a + b)(a2 - ab + b2) = a3 + b3, (a - b)(a2 + ab + b2) = a3 - bs

(9)

4- b12

+c-

b'-'

- 2a

-.

4a

ý MT .

-b f b2

- 4ac If ax` + bx + c= U, then x=

inmTn

2a

For any positive base aý1, the expression log. x=y means ay = x.

Iogr .Z I11ýý

1

a (-ry) lugQ 2n

h";

"Wy)

a ioga i f, (1r

I ýh a

= In x;

= 0;

= 1;

log. x+ log y;

=n log, x;

= log. x- log. y;

= x;

log. x/ log. b, log. x" logt a.

(10)

c

.Q

U.

ß

CL

ý+ "ý ý++

öQ+ö -6 "=

au -+

p üH

+. _.

r^ .ý. "a)

.

ßNýUO

acä+ `` y+

O++öiF.

E _Z m4 +üýa

ýQ+ "y QQwN+

tn aQ

mC al ý, C

M (1) ü II G+ý II

. _ý

(A wyu- tp +

CL x

yC+ .

ý. +

Qy`yy

'" + a, _fu"-N

_ID ýö

WAW II

-uü+..

ö

c=. =H

rv fp ir Ný+

ý rv ý

.. p C3 "

ÖGäaHG+

f0 +

t0 f0

c0 H

c Fi N LO +Ný.. i .p

.-d""N"

fp y ýi

N

ýNMC

o ýj UUU

a"" ý

ý""

L

H

(11)

TRIGONOMETRY

7r radians = 180°. 1 rad = 1800

10 _ý rad.

7r 180

H radians ýin 0 (. ()"0 t al 10 ()° 0010

300 n/6 1/2 f/2 f/3

15° n/4 f /2 vý2-/2 1

t; 0° 7r/3 f/2 1/2 f

')0° 7f/2 10

I3

The Law of Sines

sin A sin B sin C

a6c

A

vu

The Law of Cosines

a2 = b2 + c2 - 2bc cos A b2 = a2 + c2 - 2ac cos B c2 = a2 + b2 - 2ab cos C

b

(12)

Pusat Khidmat Maklumat Akademik i; NlX'FR! +! TI NtALA1'SIA iAR N'VAK

.ý. ýý .ý

r= sin x

= cosec x tan x

t' = sec x:

n2 ir ýý

.

n. 2; n

y= cot x

2. n

(13)

Trigonometric Identities

ý, iu(( 11

t, ulo sec a cosec (l -

4 "`i1ý COS (1 sill (1,

OS (1 cot a =-

sin (/

, in(90° - a) = cos a (sin 90° + a).

()s(90° - a) = sina -cos(90° +a).

rui(90° - a) cot a,

, in( -B) - sin B, Cos 0.

tan(-9) __ -tanH,

i +cos2a - 1,

tan 2a= sec2 a,

ý ýý

1- c()t' u c(). ri"'n.

.ý.. ý..

u- b) - , illui( '11, U, illll.

ýýýý! nfb) = cosucosh: F siuclsiub.

r 1u nfb) -- tan u± tan h I= tali n tan h'

ýý -I IFITTMI

sin 2u - 2sillacosa,

cos 2a = Cos2 a- sill 2 a.

=2 cos2 a-1,

=1 -2sill 2a, tan 2a 2taiia

1- ttilll (1

(14)

Sum to Product Formulae

sin a± sire b- 2 sin a2±b) +

cos ab

C2

coca + cos b- 2 cos ab

cos alb,

cosa - nosh -- -2 sin

Ca+b)

sin

Ca

b)

,

2 sin a cos b sin(a + b) + sin(a - b).

2 cos a cos b= cos(a - b) + cos(a + b).

2 cos a sin b sin(a + b) - sin(a - b).

2 sin a sin b cos(a - b) - cos(a + b).

tan a tan b cos(a - b) - cos(a + b) -

("()s((/ - h) + ýuti(a + h) .

(15)

HYPERBOLIC FUNCTIONS

ý. ,

e-r 2

. ý"ý ! i. r -

cosh x' sinh z t, uih .r-

cosh x*

e. = - e-r

(I + f-r

1 tanh2 x=

)rlt '. r -1= ý

-iuh 2x = (,,., h 2x = ý ýsh2 X =

er + e-. r

cosh z

cosech x=

cothx -

2 1

sinh r' 1

tanhr'

1.

sech 2r,

cosech 2r,

2 Binh r cosh r,

cosh2 r+ sinh2 r, cosh 2r +1

2

, inh2 x= cosh 2x -1 2

sinh-1 (ý)

log,,

2a

Cosh-1 -= loge

tanh-1

\n/

. c+ X +a2 a

. Z+ I2-a2

a x>a,

1 l

1ogr (a+ý

IrI < a.

2 a-. ý '

a

a

sech -lx = cosh-1

1

cosech -1 x= Binh-1 1, coth-I x= tanh-,

1

xxx

(16)

Graphs of Hyperbolic Functions

Y

y=sinhx

X

r

y=coshx

X

y=tanhx

y= sech x

-

x

Y

y= cosech x

y= coth. r

X

X

X

(17)

GEOMETRY

HIE93LEMMM

Triangle

1-1 hh 1

uL. in H .,.,

Circle

.4= 7rr2

(' ý! -ý

Sector of Circle

1 rH: , s= rH

Sphere

A= -1; I=ý -; r3 3

Cylinder

A= 2-r - 27rrh V= irr2h

Cone

r` t h'

V= 3ýrr2h

il

t---I

h

h

(18)

" The distance between (xi, yl, zl) and (x2, y2, z2) is

(xl - x2)2 + (yl - Y2)2 + (zl - z2)2.

" The area of a triangle with vertices (x1, yl ), (x2, Y2) and (X3, Y3) in the (x. y) plane is

1 2

,ý TTf1Iff ,

XI X2 X3

yi y2 Y3 111

General formula : ax + by +c=0.

Slope m and intercept h. y= mx + h.

Intercepts g and h: x+h=1.

9

Slope m and point (xi, yi) y- yi = 111(x -x]).

Two points (x1, yi), (x2iy2) y-Y1

_x- xl

y2-Y1 x2-xl

Angle 0 between two lines tan O= ml - m2 1+ mime

ý

Standard form : (x

- h)2 + (y

- k)2 = r' General form : x2 + y2 + 2gx +2fy+c=0

Radius of a circle r= Vl'f-2 + g2 -c

Parametric form :x=a+r cos t, y=b+r sin t

m

(19)

".. ýý

11)(y - A)

!ik'_ 4p(: r - h) F(h p. k) or F(h. k+p) ý

Iý -h)"

+ (y-1,

a>6

a2 62

F(hfc, k) or F(h, kfc)

ý r-mT

General formula: iii - blu -- (l - n.

(20)

GRAPHS OF COMMON FUNCTIONS

Y}

y= -x

y=X

X

v= -X3

y=x;;

X

y=logx

X ____. --- ---

Y= -logx

y

y=es

y=-x2

y= -1/x

y=x2

Y= vx

y=-, r

X

X

y=1/x

-- ---... X

y=e`

x

y=-e-F ýý y--

(21)

Truth Tables

p

T F

/) 9

TT TF

FT FF

,N

F

T

P, ý-9

F T

T F

J) (j

TT TF

FT FF

l) 9

TT TF

FT FF

ýý

T F T

T

Equivalences Laws Name

pAT -- p Identity laws

pvF -p pvT -T Domination laws

pAF F

Idempotent laws pVp p

pAp p

Commutative laws pvq

pAq=

qvp qAp hn9

T F

F F

p -+q

(22)

ie negation iaw 11 I

(p V q) VrpV (q V r) Associative laws

(pAg)ArpA(qAr)

pV (q A r) (p V q) A (p V r) Distributive laws

pA(gV r) (pAg)V (pAr)

De Morgan's laws -(p A q) ýp V -q -(pVq)-, pA-q

pV (p A q) p Absorption laws

pA(pVq)p

Negation laws pV -p = T pA -p F

ý" .... ý

L1I

pi4-'pV9

p-4 9ýQ-+ ýp

pV4ýp--* q

pn4-(p--* ý4) ý(p-+ 9)=pný4)

(pý4)A (p-4 r)p-ý (9A (pr)A (9--* r)(pV4)-*f

(p4)V (p-4 r)p-ý (4Vr) (p ý r) V (4 -4 r) = (p n 4) -+ r

11111 i iffill 11 111

3Wj-j; lro M@UHU'TfFoll&lF-lM=nt

pH4(pH4)n(4ýp) pH4-pH-'9

pH4=(pn4)U(-'pn-, Q)

I -(p t-a q) °p 44 -4

(23)

SET

nu

" The universal set is denoted by 1 The empty set or null set is denoted by 0, or { }. The complement of .4 is denoted by . 1` or J.

The union of A and B is denoted by .4UB. The intersection of .4 and B is denoted by

.4nB.

"A ii B means A is a subset of B. Two sets A, B are equal, .4=B if and only if ACBandBCA.

" If .1B and A B, then we write ACB and A is said to be proper subset of A.

ý =77 :ý

N= the set of natural numbers to, 1, '2.3.... }

Z= the set of integers {... , -3, -( 2, -1,0,1,2,3, ... }l Q= the set of rational numbers {Pp, qEZ, q#0}

q JJJ

R= the set of real numbers, i. e. all numbers expressible as finite or infinite decimal expressions

C= the set of complex numbers {. r 1ý ii/ !

. r. ý/ Fß}

For any sets A. B, C and X,

JA uBI = IAI +IBI - JAnBl,

lAuBuCI = IAI+IBI+ICI-lAnBl-lAnCi-lBnCI +JA nBn Cl,

JA x BI = IAJIBI,

IP(X)i = 2" where n= IXI.

(24)

Set Identities

Au0=A

Identity laws

AnU=A AuU=U

Domination laws

An0=0 AUA=A Idempotent laws

AnA=A

AU B= BUA Commutative laws

AnB=BnA

AU (B U C) _ (A U B) UC Associative laws

An (BnC)=(AnB)nC

An(BUC)=(AnB)U(AnC)

Distributive laws AU (B n C) _ (A U B) n (A U C)

' (A U B)° = A° n BC

s laws De Morgan

(A n B)c = Ac u B", AU (A n B) = A

Absorption laws

An (A UB) =A

AUA'=U

Complement laws

An A` =0

(A")"=A

Referensi

Dokumen terkait