• Tidak ada hasil yang ditemukan

Status of Thesis - UTPedia

N/A
N/A
Protected

Academic year: 2024

Membagikan "Status of Thesis - UTPedia"

Copied!
125
0
0

Teks penuh

(1)

Status of Thesis

T1tle of thes1s Engine Performance and Combustion Characteristics of Hydrogen in a Direct Injection Engine

MUHAMAD ADLAN BIN ABDULLAH

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions

1. The thes1s becomes the properties ofUTP.

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D

[]]

Confidential

Non-confidential

If tillS thes1s is confidential, please state the reason

The contents of the thesis will remain confidential for years.

Remarks on disclosure

tfr·

Signature of Author

Permanent .No 8 Jalan Desana 13 Address Taman Desaria Nilai

• Nilai, N Sembilan

Endorsed by

Name of Supervisor.

Assoc. Prof Dr. A Rashid B A Aziz

Date

(2)

APPROVAL PAGE

UNIVERSITI TEKNOLOGI PETRONAS Approval by Supervisor (s)

The undersigned certifY that they have read, and recommend to The Postgraduate Studies Programme for acceptance, a thesis entitled "Engine Performance and Combustion Characteristics of Hydrogen in a Direct Injection Engine"

submitted by Muhamad Adlan Bin Abdullah for the fulfillment of the reqUirements for the degree of Master of Science in Mechanical Engineering

Date

S1gnature Mam superv1s Date

S1gnature Co-Supervisor Date

'' I

':1-

l

;2-cfl)

1

II

(3)

TITLE PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Engine Performance and Combustion Charactenst1cs of Hydrogen in a Direct Injection Engine

By

Muhamad Adlan Bin Abdullah

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE MECHANICAL ENGINEERING

BANDAR SERI ISKANDAR, PERAK

NOVEMBER, 2008

Ill

(4)

DECLARATION

I hereby declare that the thes1s is based on my or1gmal work except for quotations and c1tatwns which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions

S1gnature Name Date

. MUHAMAD ADLAN BIN ABDULLAH

I I Fe-b JA70,

IV

(5)

ACKNOWLEDGEMENT

I thank Allah almighty for His gwdance and blessmgs that made all this work possible. I am also grateful to my supervisor, Assoc. Prof. Dr A Rashid A Aziz for his constant support and guidance for me to complete this MSc degree.

I am especially indebted to my colleagues En Razali and En Firmansyah for tirelessly assisting me in the preparation and running of the experiments. Their understanding and knowledge of the facility and the equipment was superb! I sincerely wish them luck in their future undertakings. I also wish to express my gratitude to the other postgraduate students for their friendship and sharing of ideas that assisted me in this work.

v

(6)

ABSTRACT

Hydrogen's h1gh tlammabll1ty, low igmt1on energy, clean burnmg and h1gh flame speed are attractive advantages for use 111 internal combustion engines to attain high performance and efficiency_ To overcome volumetric efficiency loss, high NOx emissions and abnormal combustion, direct injection option is being studied_

Optimisation of the direct mjection strategies and understanding of the combustion processes are currently being studied in the automotive industry and research mstitutions

In this study, the engine performance and combustwn charactenstics of hydrogen in a single cylinder direct injection engine was investigated. The engine was originally designed for CNG fuel with a compression ratio of 14: I_ To demonstrate practicality and ease of adoption, no modification was made to the engine_ Tests were carried out at full throttle for speeds from 1800 rpm to 4000 rpm. The effects of varying injection timing and air fuel ratio were studied for the purpose of finding optimised operations.

Comparisons with CNG operation were made to demonstrate the potential of hydrogen direct injection to improve the engine performance_

The study has demonstrated that desp1te having to 'de-rate' the eng me tor pre-1gnit1on control at higher speeds, I 0% performance improvement can be achieved when operating on hydrogen at low engine speeds and WOT It was shown that full and late partial direct injection at stoichiometric operation would be desired for maximum performance_ At mtermediate speed, 3000 rpm, the operation at lambda 1.2 would be optimum for engine efficiency while maintaimng the performance. An indicated thermal efficiency of 46% would be possible at lower loads by runnmg the engine w1th unthrottled lean operation_

While the CO and THC emissiOnS were an order of magnitude lower than CNG, the NOx emission would be higher at low speed. Due to the degree of stratification, at close to stoichiometric, the NOx emission increased as SOl was advanced despite lower performance and peak cylinder pressure_ Operating at lambda higher than 1.3 y1eld low NOx emission, however the performance was much compromised_

VI

(7)

Keywords: Hydrogen, d1rect InJection, spark 1gnit1on engmc, inJection tlmmg

VII

(8)

ABSTRAK

Keleb1han h1drogen dan seg1 mudah terbakar, mempunya1 pembakaran yang bcrs1h dan halaju pembakaran yang tinggi boleh menghasllkan prestasi dan kecekapan enJm yang tinggi Sistem pancitan terus umumnya dipertimbangkan untuk mcngatas1 masalah kehilangan kecckapan isipadu, pelepasan NOx dan pembakaran tidak normal.

Mengenalpasti strategi tepat untuk sistem pancitan terus ini dan pemahaman proses pcmbakaran hidrogen di dalam enjin merupakan satu bidang kajian terkini dalam industri dan di pusat-pusat penyelidikan.

Kajian ini melihat kepada prcstasi cnjin dan ciri-cin pembakaran hidrogen dalam sebuah enjin satu silinder dengan system pancitan terus. Potensi hidrogen untuk mcningkatkan prestasi enjin pada kelajuan enjin yang rendah juga dikaji. Enjin yang direka untuk kegunaan CNG dengan nisbah mampatan 14: I digunakan untuk tujuan ini. Tiada sebarang pcngubahsuaian dilakukan keatas enjin ini bagi menunjukkan potensi bahawa penggunaan hidrogen adalah praktikal dan sedia digunakan.

UJJan enJII1 dJJalankan dengan bukaan pendik1t yang maks1ma pada kelaJuan cnpn 1800 ke 4000 rpm (pusingan per minit). Kesan daripada mempelbagaikan pemasaan pancitan bahanapi dan nisbah udara dan bahanapi dikaji supaya operasi yang optima dapat dikcnalpasti_ Perbandingan dengan penggunaan CNG dibuat untuk menunjukkan potens1 pancitan terus hidrogen bagi mcningkatkan prestasi enjin_

Sebanyak I 0% pcningkatan prcstasi pada kelaJuan enJm yang rendah tclah d1buktikan mclalui kajian ini_ Penggunaan pancitan terus penuh dan separa penuh lewat adalah d1perlukan untuk prestasi maksimum. Pada kelajuan 3000 rpm, operasi pada lambda I 3 adalah optima untuk kecekapan enjin yang maksima. Pada bebanan yang rendah, tahap kecekapan tertunjuk sebanyak 46% boleh dicapai dengan opcrasi tanpa pendikit dan nisbah bahanapi dengan udara yang tinggi_

Walaupun pelepasan CO and THC dalam JUiat 10 kali leb1h rendah daripada CNG, tahap pelepasan NOx pula adalah lebih tinggi terutamanya pada kelaJuan rendah_ Pada keadaan stoikiometnk, pelepasan NOx menaik dengan pancitan lebih awal, walaupun

VIII

(9)

lekanan puncak silmdcr dan prestas1 menurun. lm d1scbabkan oleh lahap ~lratlllkas1

campuran bahan api dan udara dalam silinder. Operas1 pada lambda lebih daripada I 3 dapal mengurangkan pelcpasan NOx, namun prestasi enjin terjejas.

IX

(10)

TABLE OF CONTENTS

Status ofThesis ..

APPROVAL PAGE

DECLARATION ... . ACKNOWLEDGEMENT ...

ABSTRACT ..

ABSTRAK ..

TABLE OF CONTENTS ...

LIST OFT ABLES ..

LIST OF FIGURES . 1. INTRODUCTION .

1 . I Background ..

1.2 Problem Statement.

I 3 Objectives ..

1.4 Scope of Works

1.5 Thesis Organisation . .. . . ... . 2. LITERATURE REVIEW ... .

2.1 Engines and Gaseous Fuels ..

2.2Hydrogen in Internal Combustion Engines ..

2.3Hydrogen Fuel Delivery Methods ....

.... II . .. IV . ... V

. .. VI . ... Vlll . ... X

. .XII . ... X Ill

.. I

. ... 1

.... 5

.5 ... 6

. .. 6

. .. 8

.. 8

··· ... 10

.15 3. THEORETICAL BACKGROUND... 20

3.1 Hydrogen as Internal Combustion Engine Fuel. . ... 20

3.2 Basic Calculation of Performance Parameters for Internal Combustion Engines .. . ... 24

3.3 Combustion Analysis for Internal Combustion Engines. ... .26

3.3.1 Cylinder Pressure ... . .28

3.3.2 Mean Effective Pressure (MEP)... ... . ... 28

3.3.3 Coefficient of Variation .. ... . .. ... . ... 31

3.3.4 Heat Release Analysis... ... ... .. . . . 32

3.3.5 Combustion Efficiency. ... ... . ... 33

3.3.6 Indicated Thermal Efficiency... . ... 34

4. EXPERIMENTAL WORKS. .. . .35

4.1 The Experimental Set Up.. ... ... . ... 35

4. 1.1 The Test Engine.. ... . ... 36

4.1.2 The Dynamometer.. ... . ... 39

4.1 .3 The Fuel System ... . . ... ... ... . .. . . ... .. 39

4.1.4 Gas Analysers ... ... ... .40

4.1 5 Pressure Sensor and Cylinder Pressure Data Acquisition.. . ... .42

4.2 Device Calibration.. . ... ... .. ... ... .. ... . ... .44

4.2.1 Dynamometer Calibration. . ... ..44

4.2.2 Pressure Data Acquisition Systems Calibration Check. . ... ..44

4. 2 3 Exhaust Gas Analyser Calibration.. . ... .44

4.2.4 Injector Calibration.. . ... .45

X

(11)

43 The Test Fuel.

4.4 Test Procedures ..

4.4.1 Injection Parameters ... . 4.4.2 Abnormal Combustion Detection ....

4.4.3 Engine Warm Up and Fuel Flushing ..

4.4.4 Engine Performance and Combustion Parameters ...

5. RESULTS and ANALYSIS ... .

. 46 .48 . ... .48 ..49 . ... .49 ..50 54 5.1Abnormal Combustion of Hydrogen and Effects oflgnition Timing and Air Fuel Ratio... . ... . . ... ... ... ... ... ..54 5.2 ... Effects oflnjection Timing to the Performance and Combustion of Hydrogen

DJ engine. ... ... ..58

5.2.1 Engine Combustion. ... ... ..59

5 2.2 Engine Performance .. ... ... .. . ... ..64

5.2.3 Engine Out Emissions ... ... ..67

5.3 Effects of Air Fuel Ratio on the Performance and Combustion of Hydrogen DI

Engine . _ .. 73

5.3.1 Engine Combustion ... ___ ... _ __ .. 73

5 3.2 Engine Performance .. 79

53.3 Engine Out Emissions._ .... ... ..83

5.4 ... Comparison of Engine Performance and Combustion between Hydrogen and

Compressed Natural Gas. . . . .... 87

5.4.1 Engine Combustion... .. 87

5.4.2 Engine Performance. .. __ . .92

5.4.3 Engine Out Emissions.. . . ..95

6. CONCLUSIONS and RECOMENDATIONS .. 99

6.1 Conclusions.. . ... 99

6.2 Recommendations ...

REFERENCES APPENDIX 1.

XI

.100 -- ... 102 .... 108

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)

Referensi

Dokumen terkait