• Tidak ada hasil yang ditemukan

COURSE OUTLINE

N/A
N/A
Protected

Academic year: 2023

Membagikan "COURSE OUTLINE"

Copied!
22
0
0

Teks penuh

(1)

HOLY ANGEL UNIVERSITY

SCHOOL OF ENGINEERING & ARCHITECTURE Department of Electrical Engineering

COURSE OUTLINE: Syllabus in AC Machinery Laboratory (ACMACL) 2nd Semester, SY 2018-2019

Holy Angel University VMs

Vision: To become a role-model catalyst for countryside development and one of the most influential, best-managed Catholic universities in the Asia-Pacific region.

Mission: To offer accessible quality education that transforms students into persons of conscience, competence, and compassion.

School of Engineering and Architecture VMs Vision

A center of excellence in engineering and architecture education imbued with Catholic mission and identity serving as a role-model catalyst for countryside development

Mission

The School shall provide accessible quality engineering and architecture education leading to highly competent professional; continually contribute to the advancement of knowledge and technology through research activities; and support countryside development through environmental preservation and community involvement.

Institutional Student Learning Outcomes (ISLOs) 1. Show effective communication

2. Demonstrate appropriate value and sound ethical reasoning 3. Apply critical and creative thinking

4. Utilize civic and global learning

5. Use applied and collaborative learning 6. Employ aesthetic engagement

7. Show Information and Communication Technology (ICT) Literacy

(2)

Program Educational Objectives (PEOs)

Within a few years after graduation, graduates of our Engineering programs are expected to have:

1. Demonstrated technical competence, including design and problem-solving skills, as evidenced by:

 the sound technical designs and systems that conform with existing laws and ethical standards they produced

 the recognition and certification they received for exemplary achievement 2. Shown a commitment to life-long learning as evidenced by:

 the graduate degrees or further studies they pursue

 the professional certifications which are locally and internationally recognized they possess

 the knowledge and skills on recent technological advances in the field they continuously acquire 3. Exhibited success in their chosen profession evidenced by:

 the key level positions they hold or promotions they get in their workplace

 the good track record they possess

 the professional visibility (e.g., publications, presentations, patents, inventions, awards, etc.)

 they are involved with international activities (e.g., participation in international conferences, collaborative research, employment abroad, etc.) they are engaged with

 the entrepreneurial activities they undertake 4. Manifested faithful stewardship as evidenced by:

 their participation in University-based community extension initiatives as alumni

 their contribution to innovations/ inventions for environmental promotion and preservation, and cultural integration

 their engagement in advocacies and volunteer works for the upliftment of the quality of life and human dignity especially the marginalized

(3)

Relationship of the Program Educational Objectives to the Mission of the School of Engineering & Architecture:

Electrical Engineering Program Educational Objectives (PEOs):

Within a few years after graduation, the graduates of the Electrical Engineering program should have:

Mission The School shall provide

accessible quality

engineering and architecture education leading to high professional competence.

The School shall continually contribute to the

advancement of knowledge and technology through research activities.

The School shall support countryside development through environmental preservation and community involvement.

1. Demonstrated professional competence, including design and problem solving skills as evidenced by:

 the sound technical designs and systems that conform with existing laws and ethical standards they produced

 the recognition and certification they received for exemplary achievement

  

2. Shown a commitment to life-long learning evidenced by:

 the graduate degrees or further studies they pursue

 the professional certifications which are locally and internationally recognized they possess

 the knowledge and skills on recent technological advances in the field they continuously acquire

  

3. Exhibited success in their chosen profession evidenced by:

 the key level positions they hold or promotions they get in their workplace

 the good track record they possess

 the professional visibility (e.g., publications, presentations, patents, inventions, awards, etc.)

 they are involved with international activities (e.g., participation in international conferences, collaborative research, employment abroad, etc.) they are engaged with

 the entrepreneurial activities they undertake

  

(4)

4. Manifested faithful stewardship evidenced by:

 their participation in University-based community extension initiatives as alumni

 their contribution to innovations/ inventions for environmental promotion and preservation, and cultural integration

 their engagement in advocacies and volunteer works for the upliftment of the quality of life and human dignity especially the marginalized

  

Relationship of the Institutional Student Learning Outcomes to the Program Educational Objectives:

PEO 1 PEO 2 PEO 3 PEO 4

ISLO1: Show effective communication    

ISLO2: Demonstrate appropriate value and sound ethical reasoning    

ISLO3: Apply critical and creative thinking    

ISLO4: Utilize civic and global learning    

ISLO5: Use applied and collaborative learning    

ISLO6: Employ aesthetic engagement    

ISLO7: Show Information and Communication Technology (ICT) Literacy    

(5)

Engineering Program Outcomes (POs)

After finishing the program students will be able to:

a. Apply knowledge of mathematics, physical sciences, and engineering sciences to the practice of Engineering.

b. Design and conduct experiments, as well as to analyze and interpret data.

c. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability, in accordance with standards.

d. Function on multidisciplinary teams.

e. Identify, formulate and solve engineering problems.

f. Have an understanding of professional and ethical responsibility.

g. Demonstrate and master the ability to listen, comprehend, speak, write and convey ideas clearly and effectively, in person and through electronic media to all audiences.

h. Have broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. Recognition of the need for, and an ability to engage in life-long learning and to keep current of the development in the field.

j. Have knowledge of contemporary issues.

k. Use the techniques, skills, and modern engineering tools necessary for engineering practice.

l. Have knowledge and understanding of engineering and management principles as a member and leader in a team, to manage projects and in multidisciplinary environments.

m. Engage in service-learning program for the promotion and preservation to local culture and tradition as well as to the community.

Relationship of the Engineering Program Outcomes to the Program Educational Objectives:

PEO 1 PEO 2 PEO 3 PEO 4

a. Apply knowledge of mathematics, physical sciences, and engineering sciences to the practice of

Engineering.    

b. Design and conduct experiments, as well as to analyze and interpret data.    

(6)

c. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and

sustainability, in accordance with standards.

   

d. Function on multidisciplinary teams.    

e. Identify, formulate and solve engineering problems.    

f. Have an understanding of professional and ethical responsibility.    

g. Demonstrate and master the ability to listen, comprehend, speak, write and convey ideas clearly

and effectively, in person and through electronic media to all audiences.    

h. Have broad education necessary to understand the impact of engineering solutions in a global,

economic, environmental, and societal context.    

i. Recognition of the need for, and an ability to engage in life-long learning and to keep current of the

development in the field.    

j. Have knowledge of contemporary issues.    

k. Use the techniques, skills, and modern engineering tools necessary for engineering practice.    

(7)

l. Have knowledge and understanding of engineering and management principles as a member and

leader in a team, to manage projects and in multidisciplinary environments.    

m. Engage in service-learning program for the promotion and preservation to local culture and tradition

as well as to the community.    

Course Outcomes (COs)

1. Understand the theories and principles of ac motors and generators.

2. Interpret electrical diagrams, understand and interpret the wiring connections of ac motors and alternators.

3. Set up, connect and perform experiments on motors and alternators based from the laboratory manual and write a report.

a b c d e f g h i j k L m

CO1. Understand the theories and principles of ac motors and generators.    

CO2. Interpret electrical diagrams, understand and interpret the wiring

connections of ac motors and alternators.    

CO3. Set up, connect and perform experiments on motors and alternators

based from the laboratory manual and write a report.    

I. Course Description : A laboratory course to accompany AC Machinery II. Course Credit : 1 Unit

III. Prerequisite : DC MACHINERY (DCMAC), DC MACHINERY LABORATORY (DCMACL)

IV. Textbook Herman, S. L. (2017). Electrical Transformers and Rotating Machines. Cengage Learning V. Requirements Major Examinations

Experiments Project

(8)

Learning Outline Week/

Hours Learning output Students output Topics Core values

Sub values

Methodology Evaluation/ Learning Assessment 1-2

6 hours

At the end of course or topic the student will be able to:

 Know the rules and regulations of the laboratory

 Laboratory Worksheet

The Squirrel Cage Induction Motor

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

Laboratory Worksheet rubric

(9)

3 3 hours

 Know the behavior and characteristics of the operation of a wound rotor induction motor.

 Laboratory Worksheet

The Wound Rotor Induction Motor

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(10)

4-5 6 hours

 Know the behavior and characteristics of the operation of a synchronous motor.

 Laboratory Worksheet

The Synchronous Motor

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(11)

6 3 hours

 Know the behavior and characteristics of the operation of an alternator under load

 Laboratory Worksheet

The Alternator Under Load

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(12)

7 3 hours

 Know the behavior and characteristics of the operation of an alternator synchronization

 Laboratory Worksheet

The Alternator Synchronization

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(13)

8 3 hours

 Conduct an intensive research and know the applications of AC Machines (alternator, squirrel cage induction motor, wound rotor induction motor) in the Industry

 Laboratory Worksheet

AC Machines (alternator, squirrel cage induction motor, wound rotor induction motor) Applications in the Industry

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

9 MIDTERM EXAMINATION

(14)

10 3 hours

 Know the behavior and characteristics of the operation of an alternator power

 Laboratory Worksheet

The Alternator Power

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(15)

11 3 hours

 Know the industrial applications and characteristics of frequency conversion

 Laboratory Worksheet

Industrial Application:

Frequency Conversion

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(16)

12 3 hours

 Know the industrial applications and characteristics of self- synchronous control

 Laboratory Worksheet

Industrial

Application: Self- Synchronous Control

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(17)

13 3 hours

 Know the behavior and characteristics of the operation of a universal motor

 Laboratory Worksheet

The Universal Motor

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(18)

14-16 9 hours

 Know the behavior and characteristics of the operation of a split phase induction motor

 Laboratory Worksheet

The Split Phase Induction Motor

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

(19)

17 3 hours

 Conduct an intensive research and know the applications of AC Machines (split-phase induction motor) in the Industry

 Laboratory Worksheet

AC Machines (split-phase induction motor) Applications in the Industry

Christ-

centeredness Excellence Indicators:

Accuracy, Innovative, and Analytical, Integrity Indicators:

Accountability, Transparency and

Honesty Community:

Indicators:

Respect for Human

Dignity/Life, and Care

Societal responsibility Indicators:

Compassion and Involvement

 Lecture by the teacher

 Class discussion conducted by teacher.

 Oral questioning by the teacher.

 Video or power point presentation

 Laboratory Worksheet rubric

18 FINAL EXAMINATION

(20)

References:

Fleckenstein, J. E. (2016). Three-Phase Electrical Power. Boca Raton: CRC Press

Gupta, J. B. (2016). Electrical Machines - I for Engineering Students. New Delhi: S. K. Kataria Herman, S. L. (2017). Electrical Transformers and Rotating Machines. Cengage Learning Keljik, J. (2013). Power Generation and Delivery. Australia: Delmar Cengage Learning

Turowski, J. (2014). Engineering Electrodynamics: Electric Machine, Transformer and Power Equipment Design. Boca Raton: CRC Press Online references:

http://www.abcofacmachine.com http://www.acmachine.com

http://www.acmachine-tutorial.com Expectations from Students

Students are held responsible for meeting the standards of performance established for each course. Their performance and compliance with other course requirements are the bases for passing or failing in each course, subject to the rules of the University. The students are expected to take all examinations on the date scheduled, read the assigned topics prior to class, submit and comply with all the requirements of the subject as scheduled, attend each class on time and participate actively in the discussions.

Furthermore, assignments such as reports, reaction papers and the like shall be submitted on the set deadline as scheduled by the faculty. Extension of submission is approved for students with valid reasons like death in the family, hospitalization and other unforeseen events. Hence, certificates are needed for official documentation. Students assigned by the University in extracurricular activities (Choral, Dance Troupe and Athletes) are excused from attending the class, however, said students are not excused from classroom activities that coincide the said University activities. Spec ial quiz is given to students with valid reasons like death in the family, hospitalization and other unforeseen events. Hence, certificates are needed for official documentation. Likewise, special major examination is given to students with the same reasons above. Attendance shall be checked every meeting. Students shall be expected to be punctual in their classes. And observance of classroom decorum is hereby required as prescribed by student’s handbook.

(21)

Academic Integrity

It is the mission of the University to train its students in the highest levels of professionalism and integrity. In support of this, academic integrity is highly valued and violations are considered serious offenses. Examples of violations of academic integrity include, but are not limited to, the following:

1. Plagiarism – using ideas, data or language of another without specific or proper acknowledgment. Example: Copying text from the Web site without quoting or properly citing the page URL, using crib sheet during examination. For a clear description of what constitutes plagiarism as well as strategies for avoiding it, students may refer to the Writing Tutorial Services web site at Indiana University using the following link: http://www.indiana.edu/~wts/pamhlets.shtml. For citation styles, students may refer to http://www.uwsp.edu/psych/apa4b.htm.

2. Cheating – using or attempting to use unauthorized assistance, materials, or study aids during examination or other academic work. Examples: using a cheat sheet in a quiz or exam, altering a grade exam and resubmitting it for a better grade.

3. Fabrication – submitting contrived or improperly altered information in any academic requirements. Examples: making up data for a research project, changing data to bias its interpretation, citing nonexistent articles, contriving sources.

(Reference: Code of Academic Integrity and Charter of the Student Disciplinary System of the University of Pennsylvania at http://www.vpul.upenn.edu/osl/acadint.html).

Policy on Absences

1. Students should not incur absences of more than 20% of the required total number of class and laboratory periods in a given semester.

1.1. The maximum absences allowed per semester are:

For subjects held 1x a week, a maximum of 3 absences;

For subjects held 2x a week, a maximum of 7 absences; and For subjects held 3x a week, a maximum of 10 absences.

2. A student who incurs more than the allowed number of absences in any subject shall be given a mark of “FA” as his final rating for the semester, regardless of his performance in the class.

3. Attendance is counted from the first official day of regular classes regardless of the date of enrolment.

Other Policies

• Departmentalized when it comes to major exams such as Midterms and Finals.

• Quizzes will be given at least after the discussion of every chapter.

• Drills, Exercises, Seat works, Projects, Recitation/Role playing will be given to the students and will be graded as part of class standing.

• Homework Policy will be given at the discretion of the faculty and will be graded as part of class standing.

(22)

Grading System (Campus ++):

Class Standing: 60%

Laboratory Worksheets Project

Major Exams: 40%

Prepared by:

ENGR. MEDEN C. PARE EE Faculty Member

Reviewed by:

ENGR. NIKOLAI C. CAYANAN/ ENGR. FLAVIANO D. DULA OBE-EE Facilitator / EE Program Chairperson

Certified by:

DR. BONIFACIO V. RAMOS Director of University Library

Approved by:

DR. JAY JACK R. MANZANO SEA Dean

Referensi

Dokumen terkait

5.2 Assumptions of the Theory 110 5.2AThe Assumptions 110 5.2BMeaning of the Assumptions 110 5.3 Factor Intensity, Factor Abundance, and the Shape of the Production Frontier 112

https://doi.org/ 10.1017/jie.2019.13 Received: 17 September 2018 Revised: 17 October 2018 Accepted: 23 April 2019 First published online: 2 September 2019 Key words: Aboriginal