• Tidak ada hasil yang ditemukan

LIST OF REFERENCES

N/A
N/A
Protected

Academic year: 2023

Membagikan "LIST OF REFERENCES"

Copied!
30
0
0

Teks penuh

(1)

LIST OF REFERENCES

Ali, I. O., Hassan, A. M., Shaaban, S. M., & Soliman, K. S. (2011). Synthesis and Characterization of ZSM-5 Zeolite from Rice Husk Ash and their Adsorption of Pb2+ onto Unmodified and Surfactant-Modified Zeolite. Separation

Purification Technology, 38-44.

Abdelrahman, E. A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. https://doi.org/10.1016/j.molliq.2018.01.038 Abdullahi, T., Harun, Z., & Othman, M. H. D. (2017). A review on sustainable

synthesis of zeolite from kaolinite resources via hydrothermal process.

Advanced Powder Technology, 28(8), 1827–1840.

https://doi.org/10.1016/j.apt.2017.04.028

Abulencia, J., Martinez, H., Markes, K., Piazza, A., Qasim, M., Nossoni, G. (2012).

Desalination of Water - Technologies Used to Produce Fresh Water in Rural Settings. Manhattan College: Chemical Engineering Department.

Akcay, H., & Anagun, S. (2013). Multi response optimization application on a manufacturing factory. Mathematical and Computational Applications, 18(3), 531-538.

Aksezer, C.S. (2008). On the sensitivity of desirability functions for multiresponse optimization. Journal of Industrial and Management Optimization, 4(4), 685- 696.

Adam, F., Appaturi, J. N., & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2–14.

https://doi.org/10.1016/j.cattod.2012.04.056

Adesanya, D. A., & Raheem, A. A. (2009). Development of corn cob ash blended cement. Construction and Building Materials, 23(1), 347–352.

https://doi.org/10.1016/j.conbuildmat.2007.11.013

Agullana, A., Asadu, C., & Abuh, M. (2018). Synthesis of zeolite by thermal

treatment using locally sourced Ugwaka clay (black clay). Journal of Materials Science Research and Reviews, 1(2), 1-12.

(2)

Al-Nory, M. T., & Graves, S. C. (2013). Water desalination supply chain modelling and optimization. Proceedings - International Conference on Data

Engineering, 173–180. https://doi.org/10.1109/ICDEW.2013.6547447 Al-Shayji, K. A. (1998). Modeling, Simulation, and Optimization of Large-Scale

Commercial Desalination Plants. Virginia Polytechnic Institute and State University, ProQuest, UMI Dissertations Publishing.

Alabi, A., AlHajaj, A., Cseri, L., Szekely, G., Budd, P., Zou, L., (2018). Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination.npj Clean Water 1, 10.

Alkan, M., Hopa, Ç., Yilmaz, Z., & Güler, H. (2005). The effect of alkali

concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials, 86(1–3), 176–184. https://doi.org/10.1016/j.micromeso.2005.07.008

Andrades, R. C., Neves, R. F., Diaz, F. R. V., & Júnior, A. H. M. (2020). Influence of alkalinity on the synthesis of zeolite A and hydroxysodalite from metakaolin.

Journal of Nano Research, 61, 51–60.

https://doi.org/10.4028/www.scientific.net/JNanoR.61.51

Ankoliya, D., Mudgal, A., Sinha, M. K., Davies, P., Licon, E., Alegre, R. R., Patel, V., & Patel, J. (2021). Design and optimization of electrodialysis process parameters for brackish water treatment. Journal of Cleaner Production, 319 (August). https://doi.org/10.1016/j.jclepro.2021.128686

Antony, J., Chou, T.Y., & Ghosh, S. (2003). Training for design of experiments.

Work Study, 52(7), 341-346.

Anuwattana, R., & Khummongkol, P. (2009). Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. Journal of Hazardous Materials, 166(1), 227–232. https://doi.org/10.1016/j.jhazmat.2008.11.020 Aoki, Y. (2009). Development of Pervious Concrete: Vol. Master of [University of

Sydney]. http://epress.lib.uts.edu.au/dspace/bitstream/handle/2100/1203/02 Whole.pdf?sequence=2

Ariffin, E. Y., Lee, Y. H., Futra, D., Tan, L. L., Karim, N. H. A., Ibrahim, N. N. N., &

Ahmad, A. (2018). An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection. Analytical and Bioanalytical Chemistry, 410(9), 2363–2375. https://doi.org/10.1007/s00216-018-0893-1

(3)

Atta, A. Y., Jibril, B. Y., Aderemi, B. O., & Adefila, S. S. (2012). Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science, 61, 8–13.

https://doi.org/10.1016/j.clay.2012.02.018

Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology. CRC Press.

https://books.google.com.ph/books?id=iIi08k1iF4gC

Avci, A.H., Messana, D.A., Santoro, S., Tufa, R.A., Curcio, E., Di Profio, G., Fontananova, E., (2020a). Energy harvesting from brines by reverse electrodialysis using nafion membranes. Membranes 10, 1-16.

Ayele, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2015). Synthesis of zeolite A from Ethiopian kaolin. Microporous and Mesoporous Materials, 215, 29–36.

https://doi.org/10.1016/j.micromeso.2015.05.022

Ayele, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2016). Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Applied Clay Science, 132133, 485–490. https://doi.org/10.1016/j.clay.2016.07.019 Bahadori, A. (2016). Water supply and distribution systems. Essentials of Oil and

Gas Utilities, 225–328. https://doi.org/10.1016/b978-0-12-803088-2.00008-0 Baharudin, N. H., Mansur, T. M. N. T., Ali, R., Yatim, Y., & Wahab, A. A. A.

(2011). Optimization design and economic analysis of solar power system with sea water desalination for remote areas. 2011 IEEE Colloquium on Humanities, Science and Engineering, CHUSER 2011, Chuser, 335–339.

https://doi.org/10.1109/CHUSER.2011.6163745

Banasiak, L. J., & Schäfer, A. I. (2009). Removal of inorganic trace contaminants by electrodialysis in a remote Australian community. Desalination, 248(1–3), 48–

57. https://doi.org/10.1016/j.desal.2008.05.037

Banasiak, Laura J., Kruttschnitt, T. W., & Schäfer, A. I. (2007). Desalination using electrodialysis as a function of voltage and salt concentration. Desalination, 205(1–3), 38–46. https://doi.org/10.1016/j.desal.2006.04.038

Barreno-Avila, E., Moya-Moya, E., & Perz-Salinas, C. (2022). Rice-husk fiber reinforced composite (RFRC) drilling parameters optimization using RSM based desirability function approach. Materials Today: Proccedings, 49, 167- 174. https://doi.org/10.1016/j.matpr.2021.07.498

(4)

Bayati, B., Babaluo, A. A., & Karimi, R. (2008). Hydrothermal synthesis of

nanostructure NaA zeolite: The effect of synthesis parameters on zeolite seed size and crystallinity. Journal of the European Ceramic Society, 28(14), 2653–

2657. https://doi.org/10.1016/j.jeurceramsoc.2008.03.033

Belviso, C., Giannossa, L. C., Huertas, F. J., Lettino, A., Mangone, A., & Fiore, S.

(2015). Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures.

Microporous and Mesoporous Materials, 212, 35–47.

https://doi.org/10.1016/j.micromeso.2015.03.012

Ben Salah Sayadi, I., Sistat, P., & Tlili, M. M. (2015). Assess of physical antiscale- treatments on conventional electrodialysis pilot unit during brackish water desalination. Chemical Engineering and Processing: Process Intensification, 88, 47–57. https://doi.org/10.1016/j.cep.2014.11.013

Benaliouche, F., Hidous, N., Guerza, M., Zouad, Y., & Boucheffa, Y. (2015).

Characterization and water adsorption properties of Ag- and Zn-exchanged A zeolites. Microporous and Mesoporous Materials, 209, 184–188.

https://doi.org/10.1016/j.micromeso.2014.10.039

Bessa, R. de A., Costa, L. de S., Oliveira, C. P., Bohn, F., do Nascimento, R. F., Sasaki, J. M., & Loiola, A. R. (2017). Kaolin-based magnetic zeolites A and P as water softeners. Microporous and Mesoporous Materials, 245, 64–72.

https://doi.org/10.1016/j.micromeso.2017.03.004

Bhavornthanayod, C., & Rungrojchaipon, P. (2009). Synthesis of Zeolite A

Membrane from Rice Husk Ash. Journal of Metals, Materials and Minerals, 79-83.

Bohra, S., Kundu, D., & Naskar, M. K. (2014). One-pot synthesis of NaA and NaP zeolite powders using agro-waste material and other low-cost organic-free precursors. Ceramics International, 40(1 PART A), 1229–1234.

https://doi.org/10.1016/j.ceramint.2013.06.001

Borges, F. J., Roux-de Balmann, H., & Guardani, R. (2008). Investigation of the mass transfer processes during the desalination of water containing phenol and

sodium chloride by electrodialysis. Journal of Membrane Science, 325(1), 130–

138. https://doi.org/10.1016/j.memsci.2008.07.017

Breck, D. W., & Breck, D. W. (1973). Zeolite Molecular Sieves: Structure, Chemistry, and Use. Wiley.

https://books.google.com.ph/books?id=aY0vAQAAIAAJ

(5)

Bronić, J., Palčić, A., Subotić, B., Itani, L., & Valtchev, V. (2012). Influence of alkalinity of the starting system on size and morphology of the zeolite A crystals. Materials Chemistry and Physics, 132(2–3), 973–976.

https://doi.org/10.1016/j.matchemphys.2011.12.043

Byrappa, K., & Yoshimura, M. (2013a). Apparatus. In Handbook of Hydrothermal Technology (Second Edi, pp. 75–137). Elsevier Ltd.

https://doi.org/10.1016/b978-0-12-375090-7.00003-7

Byrappa, K., & Yoshimura, M. (2013b). Hydrothermal Synthesis and Growth of Zeolites. In Handbook of Hydrothermal Technology (Second Edi, pp. 269–347).

https://doi.org/10.1016/b978-0-12-375090-7.00006-2

Carde, C. and Francois, R. (1999). Modeling the loss of strength and porosity increase due to the leaching of cement pastes. Cement and Concrete Composites, 21, 181-188.

Cay-Durgun, P., Fink, S. G., Shabilla, A., Yin, H., Sasaki, K. A., & Lind, M. L.

(2014). Analysis of the Water Permeability of Linde Type A Zeolites in Reverse Osmosis. Separation Science and Technology, 49(18), 2824–2833.

https://doi.org/10.1080/01496395.2014.946147

Cedergen, H.R. (1989). Seepage, drainage, and flownets, 3rd edn. Wiley, New York Chandrasekhar, S., & Pramada, P. N. (2008). Microwave assisted synthesis of zeolite

A from metakaolin. Microporous and Mesoporous Materials, 108(1–3), 152–

161. https://doi.org/10.1016/j.micromeso.2007.04.003

Chang, F. W., Yang, H. C., Roselin, L. S., & Kuo, W. Y. (2006). Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 304(1–2), 30–39.

https://doi.org/10.1016/j.apcata.2006.02.017

Charcosset, C. (2009). A review of membrane processes and renewable energies for desalination. Desalination, 245(1–3), 214–231.

https://doi.org/10.1016/j.desal.2008.06.020

Chareonpanich, M., Namto, T., Kongkachuichay, P., & Limtrakul, J. (2004).

Synthesis of ZSM-5 Zeolite from Lignite Fly Ash and Rice Husk Ash. Fuel Processing Technology, 1623-1634.

Chen, J.J., Li, L.G., Ng, P.L., & Kwan, A.K.H. (2017). Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste. Cement and

(6)

Concrete Composites, 83, 101-110.

http://dx.doi.org/10.1016/j.cemconcomp.2017.06.010

Chen, S., Yue, Q., Gao, B., Li, Q., & Xu, X. (2011). Preparation and characteristics of anion exchanger from corn stalks. Desalination, 274(1), 113–119.

https://doi.org/https://doi.org/10.1016/j.desal.2011.01.080

Chen, X., Guo, Y., Ding, S., Zhang, H., Xia, F., Wang, J., & Zhou, M. (2019).

Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. Journal of Cleaner Production, 207`, 789–800.

https://doi.org/10.1016/j.jclepro.2018.09.263

Chen, X., Niu, Z., Zhang, H., Lu, M., Lu, Y., Zhou, M., & Li, B. (2020). Design of a chitosan modifying alkali-activated slag pervious concrete with the function of water purification. Construction and Building Materials, 251, 118979.

https://doi.org/10.1016/j.conbuildmat.2020.118979

Cheng, Y., Lu, M., Li, J., Su, X., Pan, S., Jiao, C., & Feng, M. (2012). Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions. Journal of Colloid and Interface Science, 369(1), 388–394.

https://doi.org/10.1016/j.jcis.2011.12.024

Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Grande, D., &

Nikonenko, V. (2015). Water desalination by neutralization dialysis with ion- exchange membranes: Flow rate and acid/alkali concentration effects.

Desalination, 361, 13–24. https://doi.org/10.1016/j.desal.2015.01.024

Chester, A. W., & Derouane, E. G. (2009). Zeolite Characterization and Catalysis. In A. W. Chester & E. G. Derouane (Eds.), Springer Science+Business Media B.V. (5th Ed.). Springer Science+Business Media B.V.

https://doi.org/10.1007/978-1-4020-9678-5_3

Clayton, C., Abbireddy, C., & Schiebel, R. (2009). A method of estimating the form of coarse particulates. Geotechnique, 59(6), 493–501.

Cohen, B., Lazarovitch, N., & Gilron, J. (2018). Upgrading groundwater for irrigation using monovalent selective electrodialysis. Desalination, 431(October 2017), 126–139. https://doi.org/10.1016/j.desal.2017.10.030

Collins, F., Rozhkovskaya, A., Outram, J. G., & Millar, G. J. (2020). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 291(March 2019), 109667.

https://doi.org/10.1016/j.micromeso.2019.109667

(7)

Cotruvo, J., & Abouzaid, H. (2010). Overview of the Health and Environmental Impacts of Desalination Technology. In Desalination Technology.

https://doi.org/10.1201/ebk1439828908-c1

Crouch, L., Pitt, J., & Hewitt, R. (2007). Aggregate effects on pervious Portland cement concrete static modulus of elasticity. Journal on Materials in Civil Engineering, 8-15.

Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites:

Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1–2), 1–78.

https://doi.org/10.1016/j.micromeso.2005.02.016

Dali Youcef, L., López-Galindo, A., Verdugo-Escamilla, C., & Belaroui, L. S.

(2020). Synthesis and characterization of zeolite LTA by hydrothermal transformation of a natural Algerian palygorskite. Applied Clay Science, 193(October 2019), 105690. https://doi.org/10.1016/j.clay.2020.105690 Das, S. N. (2011). Zeolite Synthesis and Its Applications. Department of Chemical

Engineering Thapar University, Patiala. July 2011.

De Gisi S., Lofrano G., Grassi M., Notarnicola M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review Sustain. Mater. Technol., 9 (2016), 10-

40. https://dx.doi.org/10.1016/j.susmat.2016.06.002

Dey, K. P., Ghosh, S., & Naskar, M. K. (2012). A Facile Synthesis of ZSM-11 Zeolite Particles Using Rice Husk Ash as Silica Source. Materials Letters, 87- 89.

Dey, K. P., Ghosh, S., & Naskar, M. K. (2013). Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceramics International, 39(2), 2153–2157.

https://doi.org/10.1016/j.ceramint.2012.07.083

Djamel, N., & Samira, A. (2021). Mechanism of Cu2+ ions uptake process by synthetic NaA zeolite from aqueous solution: Characterization, Kinetic, intra- crystalline diffusion and thermodynamic studies. Journal of Molecular Liquids, 323(xxxx), 114642. https://doi.org/10.1016/j.molliq.2020.114642

Doornbusch, G., van der Wal, M., Tedesco, M., Post, J., Nijmeijer, K., & Borneman, Z. (2021). Multistage electrodialysis for desalination of natural seawater.

(8)

Desalination, 505(February), 114973.

https://doi.org/10.1016/j.desal.2021.114973

Drobek, M., Motuzas, J., van Loon, M., Dirrix, R.W.J., Terpstra, R.A., Julbe, A.

(2012) Coupling microwave-assisted and classical heating methods for scaling- up MFI zeolite membrane synthesis, J. Membr. Sci. 401–402, 144–151.

Ejka, J., Morris, R. E., & Nachtigall, P. (2017). Zeolites in Catalysis: Properties and Applications. Royal Society of Chemistry.

https://books.google.com.ph/books?id=UbWrDwAAQBAJ

Elimelech, M. and Phillip, W.A. (2011). The Future of Seawater Desalination:

Energy, Technology, and the Environment, Science, 333, 712-717.

Elleuch, M., Sistat, P., Pourcelly, G., & Amor, M. Ben. (2006). Brackish water desalination by electrodialysis: opposing scaling. Desalination, 200(1–3), 752–

753. https://doi.org/10.1016/j.desal.2006.03.494

Eskandari, H., Vaghefi, M., & Kowsari, K. (2015). Investigation of mechanical and durability of concrete influenced by hydrid nano silica and microzeolite.

Procedia Materials Science. 11, 594-599.

Esmaeili, A., & Saremnia, B. (2016). Synthesis and characterization of NaA zeolite nanoparticles from Hordeum vulgare L. husk for the separation of total petroleum hydrocarbon by an adsorption process. Journal of the Taiwan Institute of Chemical Engineers, 61, 276–286.

https://doi.org/10.1016/j.jtice.2015.12.031

Evi, M., Sari, F., & Prasetyoko, D. (2018). Direct Synthesis of Sodalite from Kaolin : The Influence of Alkalinity. 18(4), 607–613. https://doi.org/10.22146/ijc.25191 Farías, T., de Ménorval, L. C., Picazo, O., & Jordán, R. (2017). Ultrasonic and

conventional synthesis of NaA zeolite from rice husk ash. Journal of Physics:

Conference Series, 792, 12032. https://doi.org/10.1088/1742- 6596/792/1/012032

Fernandes Machado, N. R. C., & Miotto, D. M. M. (2005). Synthesis of Na-A and -X zeolites from oil shale ash. Fuel, 84(18), 2289–2294.

https://doi.org/10.1016/j.fuel.2005.05.003

Fernandez-Gonzalez, C., Dominguez-Ramos, A., Ibañez, R., Chen, Y., & Irabien, A.

(2017). Valorization of desalination brines by electrodialysis with bipolar

(9)

membranes using nanocomposite anion exchange membranes. Desalination, 406, 16–24. https://doi.org/10.1016/j.desal.2016.07.033

Flanigen, E. M. (1991). Chapter 2 Zeolites and Molecular Sieves an Historical Perspective. Studies in Surface Science and Catalysis, 58(C), 13–34.

https://doi.org/10.1016/S0167-2991(08)63599-5

Fu, I., Gao, X., Yang, Y., Aiyong, F., Hao, H., Gao, C., (2014). Preparation of succinic acid using bipolar membrane electrodialysis. Separ. Purif. Technol.

127, 212-218.

Galama, A. H., Saakes, M., Bruning, H., Rijnaarts, H. H. M., & Post, J. W. (2014).

Seawater predesalination with electrodialysis. Desalination, 342, 61–69.

https://doi.org/10.1016/j.desal.2013.07.012

García-Villén, F., Flores-Ruíz, E., Verdugo-Escamilla, C., & Huertas, F. J. (2018).

Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material.

Applied Clay Science, 160(October 2017), 238–248.

https://doi.org/10.1016/j.clay.2018.02.004

Ge, Z., Dosoretz, C. G., & He, Z. (2014). Effects of number of cell pairs on the performance of microbial desalination cells. Desalination, 341(1), 101–106.

https://doi.org/10.1016/j.desal.2014.02.029

Geng, H., Li, G., Liu, D., & Liu, C. (2018). Rapid and efficient synthesis of CHA- type zeolite by interzeolite conversion of LTA-type zeolite in the presence of N, N, N-trimethyladamantammonium hydroxide. Journal of Solid State Chemistry, 265(April), 193–199. https://doi.org/10.1016/j.jssc.2018.06.004

Gerpacio, R. V, Labios, J. D., Labios, R. V, & Diangkinay, E. I. (2004). Maize in the Philippines: Production Systems, Constraints, and Research Priorities (Maize Production Systems Papers, Issue 7650). CIMMYT: International Maize and Wheat Improvement Center.

https://econpapers.repec.org/RePEc:ags:cimmmp:7650

Ghaffour, N., Missimer, T. M., & Amy, G. L. (2013). Technical review and evaluation of the economics of water desalination: Current and future

challenges for better water supply sustainability. Desalination, 309(2013), 197–

207. https://doi.org/10.1016/j.desal.2012.10.015

Ghafoori, N., & Dutta, S. (1995). Laboratory investigation of compacted no-fines concrete for paving materials. Journal of Materials in Civil Engineering , 7 (3), 183-191.

(10)

Gherasim, C. V., Křivčík, J., & Mikulášek, P. (2014). Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions.

Chemical Engineering Journal, 256, 324–334.

https://doi.org/10.1016/j.cej.2014.06.094

Ghyselbrecht, K., Huygebaert, M., Van der Bruggen, B., Ballet, R., Meesschaert, B.,

& Pinoy, L. (2013). Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination, 318, 9–18.

https://doi.org/10.1016/j.desal.2013.03.020

Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K., Meesschaert, B., &

Pinoy, L. (2014). Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. Journal of Environmental Management, 140, 69–75. https://doi.org/10.1016/j.jenvman.2014.03.009

Ginting, S. B., Yulia, Y., Wardono, H., Darmansyah, Hanif, M., & Iryani, D. A.

(2019). Synthesis and Characterization of Zeolite Lynde Type A (LTA): Effect of Aging Time. Journal of Physics: Conference Series, 1376(1).

https://doi.org/10.1088/1742-6596/1376/1/012041

Gonzalez-Vogel, A., & Rojas, O. J. (2020). Exploiting electroconvective vortices in electrodialysis with high-frequency asymmetric bipolar pulses for desalination in overlimiting current regimes. Desalination, 474(October 2019), 114190.

https://doi.org/10.1016/j.desal.2019.114190

González, F., Gimeno, A., Espinal, I., Sanabria, A. M., Uribe Rodríguez, A. F., Del Valle, N. Q., Velázquez, J. A. V., García, F. J., López, M. D. L. G., Buenabad, N. G. A., Icaza, M. E. M. M., Luz Yolanda Toro Suarez, Eneida, D., Ávila, O., Esthela, L., Hernández, A., Laura, L., Yépiz, S., Braun, V., & Clarke, V.

(2006). No 主観的健康感を中心とした在宅高齢者における健康関連指標

に関する共分散構造分析Title. Qualitative Research in Psychology, 0(2), 47–54.

Gougazeh, M., & Buhl, J. C. (2014). Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. Journal of the

Association of Arab Universities for Basic and Applied Sciences, 15(1), 35–42.

https://doi.org/10.1016/j.jaubas.2013.03.007

Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). SpringerBriefs in Molecular Science - Green Chemistry for Sustainability: Ultrasound

Technology in Green Chemistry. In Emerging Compounds Removal from Wastewater. http://link.springer.com/10.1007/978-94-007-2409-9

(11)

Gray, S., Semiat, R., Duke, M., Rahardianto, A., & Cohen, Y. (2011). Seawater Use and Desalination Technology. Treatise on Water Science, 4, 73–109.

https://doi.org/10.1016/B978-0-444-53199-5.00077-4

Grzegorzek, M., Majewska-Nowak, K., & Ahmed, A. E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion- exchange membranes. Science of the Total Environment, 722, 137681.

https://doi.org/10.1016/j.scitotenv.2020.137681

Güler, E., van Baak, W., Saakes, M., Nijmeijer, K., (2014). Monovalent ion-selective membranes for reverse electrodialysis. J. Membr. Sci. 455, 254-270.

Habito, C. F., & Briones, R. M. (2005). Philippine agriculture over the years:

performance, policies and pitfalls. Agriculture, 38.

Haddad, M., Mikhaylin, S., Bazinet, I., Savadogo, O., Paris, J., (2017).

Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: ion exchange membrane fouling identification and mechanisms. J. Colloid Interface Sci. 488, 39-47.

Hagesteijn, K.F.L., Jiang, S., Ladewig, B.P., (2018). A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 53, 11131-11150.

Hamadi, A., & Nabih, K. (2018). Synthesis of Zeolites Materials Using Fly Ash and Oil Shale Ash and Their Applications in Removing Heavy Metals from

Aqueous Solutions. Journal of Chemistry, 2018.

https://doi.org/10.1155/2018/6207910

Han, L., Galier, S., & Roux-de Balmann, H. (2015). Ion hydration number and

electro-osmosis during electrodialysis of mixed salt solution. Desalination, 373, 38–46. https://doi.org/10.1016/j.desal.2015.06.023

Haselbach, L., & Freeman, R. M. (2006). Vertical Porosity Distributions in Pervious Concrete Pavement. ACI Materials Journal, 103, 452–458.

He, Y., Cui, X., Liu, X., Wang, Y., Zhang, J., Liu, K. (2013) Preparation of self- supporting NaA zeolite membranes using geopolymers, Journal of Membrane Science, 447, 66-72.

He, W., Le Henaff, A. C., Amrose, S., Buonassisi, T., Peters, I. M., & Winter, A. G.

(2020). Voltage- and flow-controlled electrodialysis batch operation: Flexible

(12)

and optimized brackish water desalination. Desalination, 500(November 2020), 114837. https://doi.org/10.1016/j.desal.2020.114837

Herrero-Gonzalez, M., Diaz-Guridi, P., Dominguez-Ramos, A., Ibañez, R., & Irabien, A. (2018). Photovoltaic solar electrodialysis with bipolar membranes.

Desalination, 433(January), 155–163.

https://doi.org/10.1016/j.desal.2018.01.015

Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., & Li, R. (2019).

Heavy metal adsorption with zeolites: The role of hierarchical pore architecture.

Chemical Engineering Journal, 359(November 2018), 363–372.

https://doi.org/10.1016/j.cej.2018.11.087

Hosseini, S.M., Jashni, E., Amani, S., Van der Bruggen., (2017). Tailoring the electromechanical properties of ED ion exchange membranes based on the synergism of TiO2 nanoparticles-co-GO nanoplates. J. Colloid Interface Sci.

505, 763-775.

Hu, G., Wang, Y., Ma, J., Qui, J., Peng, J., Li, J., Zhai, M., (2012). A novel

amphoteric ion exchange membrane synthesized by radiation induced grafting µ-methylstyrene and N, N-dimethylaminoethyl methacrylate for vanadium redox flow battery application. J. Membr. Sci. 407-408, 184-192.

Ibrahim, A., Mahmoud, E., Yamin, M., Patibandla, V.C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties.

Construction and Building Materials, 50; 524-529.

Izidoro, J. C., Kim, M. C., Bellelli, V. F., Pane, M. C., Botelho Junior, A. B.,

Espinosa, D. C. R., & Tenório, J. A. S. (2019). Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment. Journal of Sustainable Mining, 18(4), 277–286.

https://doi.org/10.1016/j.jsm.2019.11.001

Izidoro, J. D. C., Fungaro, D. A., Abbott, J. E., & Wang, S. (2013). Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel, 103, 827–834.

https://doi.org/10.1016/j.fuel.2012.07.060

Jiang, S., & Ladewig, B.P. (2017). High ion-exchange capacity semi homogeneous cation exchange membranes prepared via a novel polymerization and

sulfonation approach in porous polypropylene. ACS Appl. Mater. Interfaces, 9, 38612-38620. https://doi.org/10.1021/acsami.7b13076

(13)

Jiang, C., Wang, Q., Li, Y., Wang, Y., & Xu, T. (2015). Water electro-transport with hydrated cations in electrodialysis. Desalination, 365, 204–212.

https://doi.org/10.1016/j.desal.2015.03.007

Jiang, C., Wang, Y., Zhang, Z., & Xu, T. (2014). Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater. Journal of Membrane Science, 450, 323–330.

https://doi.org/10.1016/j.memsci.2013.09.020

Jin Min, K., Kim, J.H., Oh, E.J., Ryu, J.H., & Park, K.Y. (2020). Flow velocity and cell pair number effect on current efficiency in plating wastewater treatment through electrodialysis. Environmental Engineering Research, 26(2).

https://doi.org/10.4491/eer.2019.502

Jo, M., Soto, L., Arocho, M., St John, J., & Hwang, S. (2015). Optimum mix design of fly ash geopolymer paste and its use in pervious concrete for removal of fecal coliforms and phosphorus in water. Construction and Building Materials, 93, 1097–1104. https://doi.org/10.1016/j.conbuildmat.2015.05.034

Johnson, E. B. G., & Arshad, S. E. (2014). Hydrothermally synthesized zeolites based on kaolinite: A review. Applied Clay Science, 9798, 215–221.

https://doi.org/10.1016/j.clay.2014.06.005

Jundeea, J., Devahastin, S., & Chiewchan, N. (2012). Development and testing of a pilot-scale electrodialyser for desalination of fish sauce. Procedia Engineering, 32, 97–103. https://doi.org/10.1016/j.proeng.2012.01.1242

Kabay, N., Ipek, Ö., Kahveci, H., & Yüksel, M. (2006). Effect of salt combination on separation of monovalent and divalent salts by electrodialysis. Desalination, 198(1–3), 84–91. https://doi.org/10.1016/j.desal.2006.09.013

Kabay, Nalan, Kahveci, H., Ipek, Ö., & Yüksel, M. (2006). Separation of monovalent and divalent ions from ternary mixtures by electrodialysis. Desalination, 198(1–

3), 74–83. https://doi.org/10.1016/j.desal.2006.09.012

Kangwen, S. (2012). International overview of seawater desalination plant by reverse osmosis technology. [Masteral Thesis, University of Stavanger].

Karagiannis, I. C., & Soldatos, P. G. (2008). Water desalination cost literature: review and assessment. Desalination, 223(1–3), 448–456.

https://doi.org/10.1016/j.desal.2007.02.071

(14)

Karimi, L., Ghassemi, A., & Zamani Sabzi, H. (2018). Quantitative studies of electrodialysis performance. Desalination, 445(May 2017), 159–169.

https://doi.org/10.1016/j.desal.2018.07.034

Katsuki, H., & Komarneni, S. (2009). Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk. Journal of Solid-State Chemistry, 182(7), 1749–1753. https://doi.org/10.1016/j.jssc.2009.04.022

Kazemimoghadam, M. (2010). New nanopore zeolite membranes for water treatment.

Desalination. Vol. 251, Issue 1-3, p. 176-180.

Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. Bin, Xu, B., Johir, M.

A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020).

Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2(August), 100019.

https://doi.org/10.1016/j.envadv.2020.100019

Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69.

https://doi.org/10.1016/j.desal.2007.01.067

Khoiruddin, Ariono, D., Subagjo Wenten, I.G., (2017). Surface modification of ion exchange membranes: methods, characteristics, and performance. J. Appl.

Polym. Sci. 134, 1-13.

Kim, D.J., Jo, M.J., Nam, S.Y., (2015). A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 21, 36-52.

Kim, G. M., Jang, J. G., Khalid, H. R., & Lee, H. K. (2017). Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates. Construction and Building Materials, 136, 1–8.

https://doi.org/10.1016/j.conbuildmat.2017.01.020

Kim, H., Yang, S. C., Choi, J., Kim, J. O., & Jeong, N. (2021). Optimization of the number of cell pairs to design efficient reverse electrodialysis stack.

Desalination, 497(October 2020), 114676.

https://doi.org/10.1016/j.desal.2020.114676

Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K. N., Kyritsi, A., & Kaseelouri- Rigopoulou, V. (2008). Synthesis of highly siliceous ZSM-5 zeolite using silica. Microporous and Mesoporous Materials, 189-196.

(15)

Koshi, K. E. (2000). Development of Permeable Test Method for Porous Concrete by Reduction of a Wall Effect. Concrete Engineering Annual Memoirs, 23 (1), 157-162.

Krznarić, I., Antonić, T., Subotić, B., & Babić-Ivančić, V. (1998). Results of thermal and hydrothermal treatment of the aluminosilicate gels prepared at different batch concentrations. Thermochimica Acta, 317(1), 73–84.

https://doi.org/10.1016/S0040-6031(98)00371-2

Kulprathipanja, S. (2010) Zeolites in Industrial Separation and Catalysis. Wiley- VCH Verlag GmbH & Co. KGaA,

Weinheim. https://doi.org/10.1002/9783527629565

Kum, S., Lawler, D. F., & Katz, L. E. (2020). Separation characteristics of cations and natural organic matter in electrodialysis. Separation and Purification Technology, 250(May), 117070. https://doi.org/10.1016/j.seppur.2020.117070 Kumar, S., & Jain, S. (2013). History, introduction, and kinetics of ion exchange

materials. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/957647 Łach, M., Grela, A., Komar, N., Mikuła, J., & Hebda, M. (2019). Calcined post-

production waste as materials suitable for the hydrothermal synthesis of zeolites. Materials, 12(7). https://doi.org/10.3390/ma12172742

Landsman, M. R., Lawler, D. F., & Katz, L. E. (2020). Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis. Desalination, 491(February), 114563.

https://doi.org/10.1016/j.desal.2020.114563

Largier, T. D., Wang, D., Mueller, J., & Cornelius, C. J. (2017). Improving electrodialysis based water desalination using a sulfonated Diels-Alder poly(phenylene). Journal of Membrane Science, 531(March), 103–110.

https://doi.org/10.1016/j.memsci.2017.03.001

Lauren, G., Lawlerb, D., Freemana, B., Marrotc, B., Moulinc, P. (2009). Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Research. 43, 2317-2348.

Lee, K. P., Arnot, T. C., Mattia, D. (2011) A review of reverse osmosis membrane materials for desalination - Development to date and future potential, Journal of Membrane Science. 370; 1-22.

(16)

Lee, M. G., Park, J. W., Kam, S. K., & Lee, C. H. (2018). Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method. Chemosphere, 207, 203–208. https://doi.org/10.1016/j.chemosphere.2018.05.080

Li, C., Ramasamy, D. L., Sillanpää, M., & Repo, E. (2021). Separation and concentration of rare earth elements from wastewater using electrodialysis technology. Separation and Purification Technology, 254(March 2020), 117442. https://doi.org/10.1016/j.seppur.2020.117442

Li, J., Zhou, M., li, Lin, yang, J., Ye, W., yuan, Xu, qing Shen, Y., nan Gao, J., jie Bruggen, C., Van der, B., (2015). Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation

exchange membrane. J. Membr. Sci. 486, 89-96.

Li, Zongjin (2011). Advance Concrete Technology. John Wiley & Sons, New Jersey.

Lim, J. Bin, Cha, S. H., & Hong, S. B. (2019). Direct N2O decomposition over iron- substituted small-pore zeolites with different pore topologies. Applied Catalysis B: Environmental, 243(June 2018), 750–759.

https://doi.org/10.1016/j.apcatb.2018.10.068

Lior, N. (2013). Advances in Water Desalination. John Wiley & Sons, Inc.

Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., & Frost, R. L. (2013). Magnetic zeolite NaA: Synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+. Chemosphere, 91(11), 1539–1546.

https://doi.org/10.1016/j.chemosphere.2012.12.038

Liu, L., Wang, C., He, Z., Das, R., Dong, B., Xie, X., Guo, Z., (2021). An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J.

Mater. Sci. Technol. 69, 212-227.

Liu, X. D., Wang, Y. P., Cui, X. M., He, Y., & Mao, J. (2013). Influence of synthesis parameters on NaA zeolite crystals. Powder Technology, 243, 184–193.

https://doi.org/10.1016/j.powtec.2013.03.048

Loiola, A. R., Andrade, J. C. R. A., Sasaki, J. M., & da Silva, L. R. D. (2012).

Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. Journal of Colloid and Interface Science, 367(1), 34–39. https://doi.org/10.1016/j.jcis.2010.11.026

(17)

Ma, N., Wei, J., Liao, R., and Tang, C. (2012). Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. Journal of Membrane Science, 405-406; 149-157.

Macintosh, A. R. (2012). Studies on Molecular Sieve Crystallization and Heteroatomic Substitution. December.

Mackinnon, I. D. R., Millar, G. J., & Stolz, W. (2012). Hydrothermal syntheses of zeolite N from kaolin. Applied Clay Science, 58, 1–7.

https://doi.org/10.1016/j.clay.2012.02.008

Maghfirah, A., Ilmi, M. M., Fajar, A. T. N., & Kadja, G. T. M. (2020). A review on the green synthesis of hierarchically porous zeolite. Materials Today Chemistry, 17. https://doi.org/10.1016/j.mtchem.2020.100348

Mahmodi, G., Dangwal, S., Zarrintaj, P., Zhu, M., Mao, Y., Mcllroy, D. N., Reza Saeb, M., Vatanpour, V., Ramsey, J. D., & Kim, S. J. (2020). NaA zeolite- coated meshes with tunable hydrophilicity for oil-water separation. Separation and Purification Technology, 240(January), 116630.

https://doi.org/10.1016/j.seppur.2020.116630

Maia, A. Á. B., Dias, R. N., Angélica, R. S., & Neves, R. F. (2019). Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon kaolin waste.

Journal of Materials Research and Technology, 8(3), 2924–2929.

https://doi.org/10.1016/j.jmrt.2019.02.021

Matsuo, Y., K. Morino, and E. Iwatsuki. (2005) A study of porous concrete using electric arc furnace oxidizing slag aggregate, in Research report of Aichi Institute of Technology, p. 8.

Mayere, A. (2011). Solar Powered Desalination [Doctoral Dissertation]. Retrieved from http://etheses.nottingham.ac.uk/2331/1/final_thesis_corrected.pdf Mayoral, A., Carey, T., Anderson, P. A., & Diaz, I. (2013). Atomic resolution

analysis of porous solids: A detailed study of silver ion-exchanged zeolite A.

Microporous and Mesoporous Materials, 166, 117–122.

https://doi.org/10.1016/j.micromeso.2012.04.033

McGovern, R. K., Zubair, S. M., & Lienhard V, J. H. (2014). The cost effectiveness of electrodialysis for diverse salinity applications. Desalination, 348, 57–65.

https://doi.org/10.1016/j.desal.2014.06.010

(18)

Mehta, P.K., and Monteiro, P. J. (2006) Concrete: Microstructure, properties, and materials. 3rd Edition. McGraw Hill, New York.

Millar, G. J., Winnett, A., Thompson, T., & Couperthwaite, S. J. (2016). Equilibrium studies of ammonium exchange with Australian natural zeolites. Journal of Water Process Engineering, 9, 47–57.

https://doi.org/10.1016/j.jwpe.2015.11.008

Mindness, S., Young, J. F., and Darwin, D. (2003), Concrete, Second Edition, Prentice Hall, New Jersey.

Mohamed, R. M., Mkhalid, I. A., & Barakat, M. A. (2015). Rice husk ash as a renewable source for the production of zeolite NaY and its characterization.

Arabian Journal of Chemistry, 8(1), 48–53.

https://doi.org/10.1016/j.arabjc.2012.12.013

Mohammadi, T., Razmi, A., & Sadrzadeh, M. (2004). Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 167(1–

3), 379–385. https://doi.org/10.1016/j.desal.2004.06.150

Mohan, N., & Cindrella, L. (2017). Template-free synthesis of Pt-MOx (M = Ni, Co & Ce) supported on cubic zeolite-A and their catalytic role in methanol oxidation and oxygen reduction reactions characterized by the hydrodynamic study. International Journal of Hydrogen Energy, 42(34), 21719–21731.

https://doi.org/10.1016/j.ijhydene.2017.07.037

Moisés, M. P., Da Silva, C. T. P., Meneguin, J. G., Girotto, E. M., & Radovanovic, E.

(2013). Synthesis of zeolite NaA from sugarcane bagasse ash. Materials Letters, 108, 243–246. https://doi.org/10.1016/j.matlet.2013.06.086

Mostafa, A. A., Youssef, H. F., & Materials, A. (2011). Utilization of Egyptian kaolin for Zeolite-A Preparation and Performance Evaluation. International

Conference on Environmental Science and Technology, 6(December 2015), 43–

48.

Moura Bernardes, A., Rodrigues, M. A. S., & Ferreira, J. Z. (2014). General Aspects of Electrodialysis BT - Electrodialysis and Water Reuse: Novel Approaches (A.

Moura Bernardes, M. A. Siqueira Rodrigues, & J. Zoppas Ferreira (eds.); pp.

11–23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40249- 4_3

Mousavi, S. F., Jafari, M., Kazemimoghadam, M., & Mohammadi, T. (2013).

Template free crystallization of zeolite Rho via Hydrothermal synthesis: Effects

(19)

of synthesis time, synthesis temperature, water content and alkalinity. Ceramics International, 39(6), 7149–7158.

https://doi.org/10.1016/j.ceramint.2013.02.058

Mukherjee, S., Barman, S., & Halder, G. (2018). Fluoride uptake by zeolite NaA synthesized from rice husk: Isotherm, kinetics, thermodynamics and cost estimation. Groundwater for Sustainable Development, 7(January 2017), 39–

47. https://doi.org/10.1016/j.gsd.2018.03.003

Munthali, M. W., Kabwadza-Corner, P., Johan, E., & Matsue, N. (2014). Decrease in Cation Exchange Capacity of Zeolites at Neutral pH: Examples and Proposals of a Determination Method. Journal of Materials Science and Chemical Engineering, 02(08), 1–5. https://doi.org/10.4236/msce.2014.28001

Muthu, M., Santhanam, M., & Kumar, M. (2018). Pb removal in pervious concrete filter: Effects of accelerated carbonation and hydraulic retention time.

Construction and Building Materials, 174, 224–232.

https://doi.org/10.1016/j.conbuildmat.2018.04.116

Na Jin, B. E. (2010). Fly Ash Applicability in Pervious Concrete [Masteral Thesis].

Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=osu12791 36103&disposition=inline

Nakashima, H., Omae, K., Takebayashi, T., Ishizuka, C., & Uemura, T. (1998).

Toxicity of silicon compounds in semiconductor industries. Journal of Occupational Health, 40(4), 270–275. https://doi.org/10.1539/joh.40.270 Nam, J. Y., Hwang, K. S., Kim, H. C., Jeong, H., Kim, H., Jwa, E., Yang, S. C., Choi,

J., Kim, C. S., Han, J. H., & Jeong, N. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148, 261–

271. https://doi.org/10.1016/j.watres.2018.10.054

Nathanson, J. A. (2003). Basic Environmental Technology: Water Supply, Waste Management, and Pollution Control. Upper Saddle River, New Jersey: Prentice Hall.

Nayar, K. G., Sundararaman, P., O’Connor, C. L., Schacherl, J. D., Heath, M. L., Gabriel, M. O., Shah, S. R., Wright, N. C., & Winter, V, A. G. (2016).

Feasibility study of an electrodialysis system for in-home water desalination in urban India. Development Engineering, 2(February 2016), 38–46.

https://doi.org/10.1016/j.deveng.2016.12.001

(20)

Neithalath, N., Weiss, J., & Olek, J. (2006). Characterizing Enhanced Porosity Concrete Using Electrical Impedance to Predict Acoustic and Hydraulic Performance. Cement and Concrete Research, 36 (11), 2074-2085.

Neville, A.M. (2011). Properties of Concrete. 5th Edition. Pearson Education Limited.

Nie, X.Y., Sun, S.Y., Sun, Z., Song, X., Yu, J.G., (2017). Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion- exchange membranes. Desalination 403, 128-135.

Niño, E., Rosa, J., Bonet, S., Ramirez, N., & Cabrera-Rios, M. (2015). Multiple objective optimization using desirability functions for the design of a 3D printer prototype. Industrial and Systems Engineering Research, 1294-1303.

Nowak, P., Muir, B., Solinska, A., Franus, M., & Bajda, T. (2021). Synthesis and characterization of zeolites produced from low-quality coal fly ash and wet flue gas desulphurization wastewater. Materials, 14(6).

https://doi.org/10.3390/ma14061558

Nyankson, E., Efavi, J. K., Yaya, A., Manu, G., Asare, K., Daafuor, J., & Abrokwah, R. Y. (2018). Synthesis and characterisation of zeolite-A and Zn-exchanged zeolite-A based on natural aluminosilicates and their potential applications.

Cogent Engineering, 5(1). https://doi.org/10.1080/23311916.2018.1440480 Okoronkwo, E. A., Imoisili, P., & Olusunle, S. (2013). Extraction and

characterization of amorphous silica from corn cob ash by sol-gel method.

Chemistry and Materials Research, 3, 68–72.

Ollivier, J., Torrenti, J., and Carcasses, M. (2012). Physical Properties of Concrete and Concrete Constituents. John Wiley & Sons, Inc.

Ono, M., Nagashima, M., Otsuka, K. and Ito, T. (1978). Mechanism of the chemical attack of seawater in cement hydration. Cement Gijyutu Nenpo, 32, 100-103.

Othman Ali, I., Hassan, A. M., Shaaban, S. M., & Soliman, K. S. (2011). Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite. Separation and Purification Technology, 83(1), 38–44.

https://doi.org/10.1016/j.seppur.2011.08.034

(21)

Otsuki, N., Miyazato, S., Minagawa, H. and Hirayama, S. (1999). Theoretical simulation of ion migration in concrete. Concrete Research in Technology, 10(2), 43-49.

Panitchakarn, P., Laosiripojana, N., Viriya-umpikul, N., & Pavasant, P. (2014) Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. Journal of the Air & Waste Management Association, 64:5, 586-596.

https://doi.org/10.1080/10962247.2013.859184

Pangan, N., Gallardo, S., Gaspillo, P. A., Kurniawan, W., Hinode, H., & Promentilla, M. (2021). Hydrothermal synthesis and characterization of zeolite a from corn (Zea mays) stover ash. Materials, 14(17). https://doi.org/10.3390/ma14174915 Panpa, W., & Jinawath, S. (2009). Synthesis of ZSM-5 zeolite and silicalite from rice

husk ash. Applied Catalysis B: Environmental, 90(3–4), 389–394.

https://doi.org/10.1016/j.apcatb.2009.03.029

Pärnamäe, R., Mareev, S., Nikonenko, V., Melnikov, S., Sheldeshov, N., Zabolotskii, V., Hamelers, H.V.M., Tedesco, M., (2021a). Bipolar membranes: a review on principles, latest developments, and applications. J. Membr. Sci. 617, 118538.

Patil, P., & Murnal, S. M. (2014). Study on the Properties of Pervious Concrete.

International Journal of Engineering Research & Technology, 3(5), 819–822.

www.ijert.org

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2010). Introduction to Spectroscopy (Fourth Edi). Brooks / Cole Cengage Learning.

Pawlowski, S., Crespo, J. G., & Velizarov, S. (2014). Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs. Journal of Membrane Science, 462, 96–111.

https://doi.org/10.1016/j.memsci.2014.03.020

Payra, P., & Dutta, P. K. (2004). Zeolites: A Primer. ChemInform, 35(38).

https://doi.org/10.1002/chin.200438229

Permatasari, N., Sucahya, T. N., & Dani Nandiyanto, A. B. (2016). Review:

Agricultural Wastes as a Source of Silica Material. Indonesian Journal of Science and Technology, 1(1), 82. https://doi.org/10.17509/ijost.v1i1.2216 Petkowicz, D. I., Rigo, R. T., Radtke, C., Pergher, S. B., & dos Santos, J. H. Z.

(2008). Zeolite NaA from Brazilian chrysotile and rice husk. Microporous and Mesoporous Materials, 116(1–3), 548–554.

https://doi.org/10.1016/j.micromeso.2008.05.014

(22)

Petrov, I., & Michalev, T. (2012). Synthesis of Zeolite A: A Review. (Proceedings - Chemical Technologies), 51, Book 9.1, 30–35.

http://conf.uniruse.bg/bg/docs/cp12/9.1/9.1-5.pdf

Philippine Statistics Authority. (2018). Rice and Corn Situation and Outlook, October 2018 Round. October, 1–7.

Prabha, S., Durgalakshmi, D., Rajendran, S., & Lichtfouse, E. (2021). Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environmental Chemistry Letters, 19(2), 1667–

1691. https://doi.org/10.1007/s10311-020-01123-5

Promentilla, M.A., Thang, N.H., Kien, P.T., Hinode, H., Bacani, F., & Gallardo, S.

(2016). Optimizing ternary-blended geopolymers with multi-response surface analysis. Waste Biomass Valor, 1-11. https://doi.org/10.1007/s12649-0169490- 8

Purnomo, C. W., Salim, C., & Hinode, H. (2012). Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash. Microporous and Mesoporous Materials, 162, 6–

13. https://doi.org/10.1016/j.micromeso.2012.06.007

Qian, T., & Li, J. (2015). Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique. Advanced Powder Technology, 26(1), 98–104.

https://doi.org/10.1016/j.apt.2014.08.010

Qin, C., Wang, R., Ma, W. (2010). Characteristics of calcium adsorption by Ca- Selectivity zeolite in fixed-pH and in a range of pH. Chemical Engineering Journal, 156; 540-545.

Radmanesh, F., Rijnaarts, T., Moheb, A., Sadeghi, M., de Vos, W.M., (2019).

Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. J.

Colloid Interface Sci. 533, 658-670.

Rajput, A., Sharma, P. P., Raj, S. K., Kumari, J., Rathore, M. S., & Kulshrestha, V.

(2021). Effect of environmental temperature and applied potential on water desalination performance using electrodialysis. Materials Today Chemistry, 20, 100484. https://doi.org/10.1016/j.mtchem.2021.100484

Ramdin, M., Morrison, A.R.T., De Groen, M., Van Haperen, R., De Kler, R., Van Den Broeke., L.J.P., Martin Trusler, J.P., De Jong, W., Vlugt, T.J.H., (2019).

High pressure electrochemical reduction of CO2 to formic acid/formate: a

(23)

comparison between bipolar membranes and cation exchange membranes. Ind.

Eng. Chem. Res. 58, 1834-1847.

Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., Ge, L., Bakangura, E., Xu, T., (2017). Ion exchange membranes: new developments and applications. J.

Membr. Sci. 522, 267-291.

Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize

production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112. https://doi.org/10.1111/nyas.12396

Rees, L. V. C. (1992). Introduction to Zeolite Science and Practice: H. van Bekkum, E.M. Flanigen and J.C. Jansen, Editors Studies in Surface Science and

Catalysis, Vol. 58, Elsevier, Amsterdam, 1991, ISBN 0-444-88969-8, 769 pp., US $225.50/Dfl 395.00. Zeolites, 12(6), 767.

https://doi.org/https://doi.org/10.1016/0144-2449(92)90130-H

Reig, M., Casas, S., Valderrama, C., Gibert, O., & Cortina, J. L. (2016). Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base. Desalination, 398, 87–97. https://doi.org/10.1016/j.desal.2016.07.024

Ríos R., C. A., Williams, C. D., & Roberts, C. L. (2009). A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites.

Fuel, 88(8), 1403–1416. https://doi.org/10.1016/j.fuel.2009.02.012

Rozhkovskaya, A., Rajapakse, J., & Millar, G. J. (2021). Optimisation of zeolite LTA synthesis from alum sludge and the influence of the sludge source. Journal of Environmental Sciences (China), 99, 130–142.

https://doi.org/10.1016/j.jes.2020.06.019

Rudzionis, Z., Adhikary, S.K., Manhanga, F.C., Ashish, D.K., Ivanauskas, R., Stelmokaitis, G., Navickas, A.A. (2021). Natural zeolite poweder in

cementitious composites and its application as heavy metal absorbents. Journal of Building Engineering, 42, 1-12. https://doi.org/10.1016/j.jobe.2021.103085 Ryu, T., Kim, H., & Hong, S. B. (2019). Nature of active sites in Cu-LTA NH3-SCR

catalysts: A comparative study with Cu-SSZ-13. Applied Catalysis B:

Environmental, 245(October 2018), 513–521.

https://doi.org/10.1016/j.apcatb.2019.01.006

Saada, M. A., Soulard, M., Patarin, J., & Regis, R. C. (2009). Synthesis of zeolite materials from asbestos wastes: An economical approach. Microporous and

(24)

Mesoporous Materials, 122(1–3), 275–282.

https://doi.org/10.1016/j.micromeso.2009.03.011

Saceda, J., De Leon, R., Rintramee, K., Prayoonpokarach, S., & Wittayakun, J.

(2011). Properties of silica from rice husk and rice husk ash and their utilizations for zeolite y synthesis. Quim. Nova, 34, 1394-1397.

Sadrzadeh, M., & Mohammadi, T. (2008). Sea water desalination using electrodialysis. Desalination, 221(1–3), 440–447.

https://doi.org/10.1016/j.desal.2007.01.103

Sadrzadeh, M., Kaviani, A., & Mohammadi, T. (2007). Mathematical modeling of desalination by electrodialysis. Desalination, 206(1–3), 538–546.

https://doi.org/10.1016/j.desal.2006.04.062

Saito, H., Nakane, S., Tsuji, Y. and Fujiwara, A. (1997). Application of accelerated electrical test method to deterioration of cement hydration products by chemical attack. Journal of Materials, Concrete Structures and Pavements, 564(V-35), 189-197.’

Sallam, M. (2006). Zeolite synthesis from municipal solid waste ash using fusion and hydrothermal treatment. [Doctoral Dissertation, Civil and Environmental Engineering, University of South Florida]. University of South Florida Scholar Commons.

Sannino, F., Ruocco, S., Marocco, A., Esposito, S., & Pansini, M. (2012). Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment. Journal of Hazardous Materials, 229230, 354–360. https://doi.org/10.1016/j.jhazmat.2012.06.011

Santasnachok, C., Kurniawan, W., & Hinode, H. (2015). The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining. Journal of Environmental Chemical Engineering, 3(3), 2115–2126.

https://doi.org/10.1016/j.jece.2015.07.016

Severin, B. F., & Hayes, T. D. (2021). Effect of electrode rinse solutions on the electrodialysis of concentrated salts. Separation and Purification Technology, 274(June), 119048. https://doi.org/10.1016/j.seppur.2021.119048

Shabalala, A. N., Ekolu, S. O., Diop, S., & Solomon, F. (2017). Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column

(25)

study. Journal of Hazardous Materials, 323, 641–653.

https://doi.org/10.1016/j.jhazmat.2016.10.027

Shi, S., Lee, Y. H., Yun, S. H., Hung, P. V. X., & Moon, S. H. (2010). Comparisons of fish meat extract desalination by electrodialysis using different

configurations of membrane stack. Journal of Food Engineering, 101(4), 417–

423. https://doi.org/10.1016/j.jfoodeng.2010.07.031

Shirazian, S., & Ashrafizadeh, S. N. (2015). Synthesis of substrate-modified LTA zeolite membranes for dehydration of natural gas. Fuel, 148, 112–119.

https://doi.org/10.1016/j.fuel.2015.01.086

Sicakova, A., Spak, M., Kozlovska, M., & Kovac, M. (2017). Long term properties of cement-based composites incorporating natural zeolite as a feature of

progressive building material. Advances of Materials Science and Engineering, 1-8. https://doi.org/10.1155/2017/7139481

Son, T.Y., Choi, D.H., Park, C.H., Nam, S.Y., (2017). Preparation and

electrochemical characterization of membranes using submicron sized particles with high Ion exchange capacity for electro-adsorptive deionization. J. Nanosci.

Nanotechnol. 17, 7743-7750.

Sonebi, M., & Bassuoni, M. T. (2013). Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. Construction and Building Materials, 38, 147–154.

https://doi.org/10.1016/j.conbuildmat.2012.07.044

Stante, M. (2013). Yield of Dimethyl Ether and Gasoline as a Function of Morphology of the ZSM-5 Catalyst. [Masteral Thesis, Luleå University of Technology].

Su, S., Ma, H., & Chuan, X. (2016). Hydrothermal synthesis of zeolite A from K- feldspar and its crystallization mechanism. Advance Powder Technology, 27, 139-144. https://dx.doi.org/10.1016/j.apt.2015.11.011

Suwaileh, W., Johnson, D., & Hilal, N. (2020). Membrane desalination and water re- use for agriculture: State of the art and future outlook. Desalination, 491(June), 114559. https://doi.org/10.1016/j.desal.2020.114559

Swenson, P., Tanchuk, B., Gupta,A., An, W., Kuznicki, S.M. (2012) Pervaporative desalination of water using natural zeolite membranes. Desalination, 285, 68- 72.

(26)

Sugiyama, T., Ritthichauy, W., & Tsuji, Y. (2003). Simultaneous Transport of Chloride and Calcium Ions in Hydrated Cement Systems. Journal of Advance Concrete Technology Vol.1 No. 2.

Tamer, N.H. (2006). Synthesis and characterization of zeolite beta [Masteral Thesis, Natural and Applied Sciences, Middle East Technical University]. Middle East Technical University Research Repository.

Tan, S. X., Lim, S., Ong, H. C., & Pang, Y. L. (2019). State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel, 235(July 2018), 886–907.

https://doi.org/10.1016/j.fuel.2018.08.021

Tanaka, Y. (2009). A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water. Desalination, 249(3), 1039–

1047. https://doi.org/10.1016/j.desal.2009.06.055

Tanaka, Y. (2010a). A computer simulation of feed and bleed ion exchange

membrane electrodialysis for desalination of saline water. Desalination, 254(1–

3), 99–107. https://doi.org/10.1016/j.desal.2009.12.008

Tanaka, Y. (2010b). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350(1–2), 347–360.

https://doi.org/10.1016/j.memsci.2010.01.010

Tanaka, Y. (2014). Development of a computer simulation program of feed-and-bleed ion-exchange membrane electrodialysis for saline water desalination.

Desalination, 342, 126–138. https://doi.org/10.1016/j.desal.2013.08.016 Tanchuling, H. (2007). Issues and prospects of the Philippine corn industry / Hazel

Tanchuling ; editors, Joyce Sierra, Jessica Reyes-Cantos (J. Sierra, J. C. Reyes- Cantos, & R. W. and A. Network (eds.)). Rice Watch and Action Network.

Tennis, P., Leming, M., & Akers, D. (2004). Pervious Concrete Pavements. Skokie, Illinois and Spring, Maryland: Portland Cement Association & National Ready Mixed Concrete Association.

Thuadaij, P. (2016). Synthesis and characterizations of zeolite derived from Buriram sugarcane bagasse ash and Narathiwat kaolinite. SNRU Journal of Science and Technology, 8 (3), 320-326.

Tokmachev, M. G., Tikhonov, N. A., & Khamizov, R. K. (2008). Investigation of cyclic self-sustaining ion exchange process for softening water solutions on the

(27)

basis of mathematical modeling. Reactive and Functional Polymers, 68(8), 1245–1252. https://doi.org/10.1016/j.reactfunctpolym.2008.05.004

Townsend, R.P. (1986). Ion exchange in zeolites: some recent developments in theory and practice. Studies in Surface Science and Catalysis, 28, 273-282.

https://doi.org/10.1016/S0167-2991(09)60883-1

Valero, F., Barceló, A., & Arbós, R. (2011). Electrodialysis Technology - Theory and Applications. In M. Schorr (Ed.), Desalination, Trends and Technologies (pp.

3–20). https://doi.org/10.1201/b14924-7

Van der Bruggen, B. (2015). Advances in electrodialysis for water treatment. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-1- 78242-121-4.00006-X

Vázquez-Rivera, N. I., Soto-Pérez, L., St John, J. N., Molina-Bas, O. I., & Hwang, S.

S. (2015). Optimization of pervious concrete containing fly ash and iron oxide nanoparticles and its application for phosphorus removal. Construction and Building Materials, 93, 22–28.

https://doi.org/10.1016/j.conbuildmat.2015.05.110

Vegere, K., Kravcevica, R., Krauklis, A. E., & Juhna, T. (2020). Comparative study of hydrothermal synthesis routes of zeolite A. Materials Today: Proceedings, 4–7. https://doi.org/10.1016/j.matpr.2020.06.326

Vejmelkova, E., Konakova, D., Kulovana, T., Keppert, M., Zumar, J., Rovnanikova, P., Kersner, Z., Sedlmajer, M., Cerny, R. (2015). Engineering properties of concrete containing natural zeolite as supplementary cementitious material:

strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259-267. http://dx.doi.org/10.1016/j-

cemconcomp.2014.09.013

Verdoliva, V., Saviano, M., & De Luca, S. (2019). Zeolites as acid/base solid catalysts: recent synthetic developments. Catalysts, 9, 1-21.

https://doi:10.3390/catal9030248

Von-kiti, E. (2012). Synthesis of Zeolites and Their Applications. [Masteral Thesis Knust].

Voutchkov, N. (2013). Desalination Engineering: Planning and Design. Chicago:

Mc-Graw Hill.

(28)

Wang, C. F., Li, J. S., Wang, L. J., & Sun, X. Y. (2008). Influence of NaOH

concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method. Journal of Hazardous Materials, 155(1–2), 58–64.

https://doi.org/10.1016/j.jhazmat.2007.11.028

Wang, J. Q., Huang, Y. X., Pan, Y., & Mi, J. X. (2016). New hydrothermal route for the synthesis of high purity nanoparticles of zeolite y from kaolin and quartz.

Microporous and Mesoporous Materials, 232, 77–85.

https://doi.org/10.1016/j.micromeso.2016.06.010

Wang, Lawrence, Chen, J. P., Hung, Y.-T., & Shammas, N. K. (2011). Membrane and Desalination Technologies. In Membrane and Desalination Technologies (13th ed.). Springer New York. https://doi.org/10.1007/978-1-59745-278-6 Wang, L., Wang, S., Xiao, M., Song, S., Han, D., Hickner, M.A. Meng., Y. (2014).

Amphoteric ion-exchange membrane synthesized by direct polymerization for vanadium redox flow battery application. Int. J. Hydrogen Energy. 39, 16123- 16131. https://doi.org/10.1016/j-ijhhydene.2014.04.049

Wang, Lei, Yang, J., Wang, J., Raza, W., Liu, G., Lu, J., & Zhang, Y. (2020).

Microwave synthesis of NaA zeolite membranes on coarse macroporous α- Al2O3 tubes for desalination. Microporous and Mesoporous Materials, 306, 110360. https://doi.org/10.1016/j.micromeso.2020.110360

Wang, S., and Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24.

Wang, Y., Du, T., Jia, H., Qiu, Z., & Song, Y. (2018). Synthesis, characterization and CO2 adsorption of NaA, NaX and NaZSM-5 from rice husk ash. Solid State Sciences, 86(October), 24–33.

https://doi.org/10.1016/j.solidstatesciences.2018.10.003

World Intellectual Property Organization. (2011). Patent Landscape Report on Desalination Technologies and the Use of Alternative Energies for Desalination. Switzerland: Cambridge IP.

Wright, N. C., & Winter, A. G. (2014). Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India. Desalination, 352, 82–91.

https://doi.org/10.1016/j.desal.2014.07.035

Xie, C., Yuan, L., Tan, H., Zhang, Y., Zhao, M., & Jia, Y. (2021). Experimental study on the water purification performance of biochar-modified pervious concrete.

(29)

Construction and Building Materials, 285, 122767.

https://doi.org/10.1016/j.conbuildmat.2021.122767

Xu, J., Harold, M. P., & Balakotaiah, V. (2011). Modeling the effects of Pt loading on NOx storage on Pt/BaO/Al2O3 catalysts. Applied Catalysis B: Environmental, 104(3–4), 305–315. https://doi.org/10.1016/j.apcatb.2011.03.014

Xu, X., Lin, L., Ma, G., Wang, H., Jiang, W., He, Q., Nirmalakhandan, N., Xu, P.

(2018), Study of polyethyleneimine coating on membrane permselectivity and desalination performance during pilot-scale electrodialysis of reverse osmosis concentrate. Separation Purification Technology. 207, 396-405.

https://doi.org.10.1016/j.desal.2017.11.015

Yang, J., & Jiang, G. (2003). Experimental Study on Properties of Pervious Concrete Pavement Materials. Cement and Concrete Research, 33, 381-386.

Yehia, S., & Emam, E. (2017). Performance of concrete containing zeolite as a supplementary cementitious material. Int. Research Journal of Engineering and Technology, 4, 1619-1625.

Yu, J. (2007). Chapter 3 Synthesis of zeolites. In Studies in Surface Science and Catalysis (Vol. 168). Elsevier B.V. https://doi.org/10.1016/S0167-

2991(07)80791-9

Zhang, X., Tong, D., Jia, W., Tang, D., Li, X., & Yang, R. (2014). Studies on room- temperature synthesis of zeolite NaA. Materials Research Bulletin, 52, 96–102.

https://doi.org/10.1016/j.materresbull.2014.01.008

Zhang, Y. F., Liu, L., Du, J., Fu, R., Van der Bruggen, B., & Zhang, Y. (2017).

Fracsis: Ion fractionation and metathesis by a NF-ED integrated system to improve water recovery. Journal of Membrane Science, 523(July 2016), 385–

393. https://doi.org/10.1016/j.memsci.2016.09.052

Zhao, S., Hu, S., Zhang, X., Song, L., Wang, Y., Tan, M., Kong, L., & Zhang, Y.

(2020). Integrated membrane system without adding chemicals for produced water desalination towards zero liquid discharge. Desalination, 496(July), 114693. https://doi.org/10.1016/j.desal.2020.114693

Zheng, Y., Li, Z., Wang, X., Gao, X., & Gao, C. (2015). The treatment of cyanide from gold mine effluent by a novel five-compartment electrodialysis.

Electrochimica Acta, 169, 150–158.

https://doi.org/10.1016/j.electacta.2015.04.015

(30)

Zhou, D., Zhu, L., Fu, Y., Zhu, M., & Xue, L. (2015). Development of lower cost seawater desalination processes using nanofiltration technologies - A review.

Desalination, 376(1219), 109–116. https://doi.org/10.1016/j.desal.2015.08.020 Zhou, J., Kuang, H., Zhuang, W., Chen, Y., Liu, D., Ying, H., & Wu, J. (2018).

Application of electrodialysis to extract 5′-ribonucleotides from hydrolysate:

Efficient decolorization and membrane fouling. RSC Advances, 8(51), 29115–

29128. https://doi.org/10.1039/c8ra02550a

Zhou, S., Zhou, Y., Zhang, Y., Sheng, X., & Seo, C. (2015). Effects of the crystallization time on the synthesis of zeolite with flower-shaped crystals.

Materials Letters, 143, 261-264. https://dx.doi.org/10.1016/j.matlet.201411.164 Zhua, B., Doherty, C.M., Hu, X., Hill, A.J., Zou, L., Lin, Y.S., & Duke, M. (2013).

Designing hierarchical porous features of ZSM-5 zeolites via Si/Al ratio and their dynamic behavior in seawater ion complexes. Microporous and

Mesoporous Materials, 173, 78-85.

Zunino, F., Boehm-Courjault, E., & Scrivener, K. (2020). The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Materials and Structures/Materiaux et Constructions, 53(2).

https://doi.org/10.1617/s11527-020-01478-9

Referensi

Dokumen terkait

Existence of passenger public transport continue to expand along with progressively the complex of requirement of human being mobility specially economic bus route of Pacitan

The Elkhorn Baptist Association met in its One Hundred and Seventeenth Annual Session with the David's Fork Baptist Church, Fayette County, Ky., August 12.. After smging of that dear