CHAPTER 5 CONCLUSION AND RECOMMENDATION
5.2 Recommendations
5.2.1 Osmotic pretreatment was successfully applied to improve the nutrition of osmo-dehydrated mango and dried mango. However, the effect of processing fruits on the availability of nutrients such as carotenoids also requires further investigation.
5.2.2 The equipment used for the vacuum impregnation technique was only a lab scale unit. For industrial use, development on a larger scale will be required.
106
REFE REN CES
REFERENCES
107
REFERRENCES
Abraão, A. S., Lemos, A. M., Vilela, A., Sousa, J. M., & Nunes, F. M. (2013).
Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481–494.
https://doi.org/10.1016/j.fbp.2013.04.006
Agre, P., Bonhivers, M., & Borgnia, M. J. (1998). The aquaporins, blueprints for cellular plumbing systems. Journal of Biological Chemistry, 273(24), 14659–
14662. https://doi.org/10.1074/jbc.273.24.14659
Ahmadvand, H., Yalameha, B., Adibhesami, G., Nasri, M., Naderi, N.,
Babaeenezhad, E., & Nouryazdan, N. (2019). The protective role of gallic acid pretreatment on renal ischemia-reperfusion injury in rats. Reports of
Biochemistry & Molecular Biology, 8(1), 42–48.
Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43.
https://doi.org/10.1016/j.ifset.2016.01.003
Akbarian, M., Ghasemkhani, N., & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial : A review. International Journal of Biosciences, 4(1), 42–57.
Aktas, T., Ulger, P., Daglioglu, F., & Hasturk, F. (2013). Changes of nutritional and physical quality characteristics during storage of osmotic pretreated apple before hot air drying and sensory evaluation. Journal of Food Quality, 36(6), 411–425.
https://doi.org/10.1111/jfq.12062
Alam, M. S., Kaur, M., & Ramya, H. G. (2019). Mass transfer kinetics for osmotic dehydration of kinnow fruit in sugar solution. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 89(1), 361–370.
https://doi.org/10.1007/s40011-017-0951-z
Albanese, D., Cinquanta, L., Cuccurullo, G., & Di Matteo, M. (2013). Effects of microwave and hot-air drying methods on color, β-carotene and radical scavenging activity of apricots. International Journal of Food Science and Technology, 48(6), 1327–1333. https://doi.org/10.1111/ijfs.12095
Alighourchi, H., Barzegar, M., & Abbasi, S. (2008). Anthocyanins characterization of 15 Iranian pomegranate (Punica granatum L.) varieties and their variation after cold storage and pasteurization. European Food Research and Technology, 227(3), 881–887. https://doi.org/10.1007/s00217-007-0799-1
Almeida, J. A. R., Mussi, L. P., Oliveira, D. B., & Pereira, N. R. (2015). Effect of temperature and sucrose concentration on the retention of polyphenol
compounds and antioxidant activity of osmotically dehydrated bananas.
Journal of Food Processing and Preservation, 39(6), 1061–1069.
https://doi.org/10.1111/jfpp.12321
108
Anwar, F., Przybylski, R., Rudzinska, M., Gruczynska, E., & Bain, J. (2008). Fatty acid, tocopherol and sterol compositions of Canadian prairie fruit seed lipids.
JAOCS, Journal of the American Oil Chemists’ Society, 85(10), 953–959.
https://doi.org/10.1007/s11746-008-1276-0
AOAC. (2000). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.
AOAC. (2012). Method 984.27 Official Methods of Analysis. Gaithersburg, MD:
Association of Official Analytical Chemists.
Arauz, L. F. (2000). Mango anthracnose: Economic impact and current options for integrated management. Plant Disease, 84(6), 600–611.
Assous, M. T. M. (2014). Production and evaluation of partially air dehydrated and edible coated mango slices. Egyptian Journal of Agricultural Research, 92(2), 729–747.
Azarpazhooh, E., & Ramaswamy, H. S. (2010). Microwave-osmotic dehydration of apples under continuous flow medium spray conditions: Comparison with other methods. Drying Technology, 28(1), 49–56.
https://doi.org/10.1080/07373930903430611
Azuara, E., Garcia, H. S., & Beristain, C. I. (1996). Effect of the centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, 29(2), 195–199. https://doi.org/10.1016/0963-9969(96)00033-6
Bakowska-Barczak, A. M., Schieber, A., & Kolodziejczyk, P. (2009).
Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. Journal of Agricultural and Food Chemistry, 57(24), 11528–11536.
https://doi.org/10.1021/jf902161k
Barat, J. M., Chiralt, A., & Fito, P. (2001). Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Science and Technology International, 7(5), 451–456. https://doi.org/10.1106/4L77-UPTY-KEAQ-3TIV
Barraza-jáuregui, G., Vega, G., Valeriano, J., Obregón, J., Siche, R., & Miano, A. C.
(2017). Osmotic pretreatment to assure retention of phenolics and anthocyanins in berry jams. Food Bioscience, 17, 24–28.
https://doi.org/10.1016/j.fbio.2016.12.001
Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith):
Influence of operating variables on process kinetics and compositional changes.
Journal of Food Engineering, 92(4), 416–424.
https://doi.org/10.1016/j.jfoodeng.2008.12.034
Barrera, C., Betoret, N., & Fito, P. (2004). Ca2+ and Fe2+ influence on the osmotic dehydration kinetics of apple slices (var. Granny Smith). Journal of Food Engineering, 65(1), 9–14. https://doi.org/10.1016/j.jfoodeng.2003.10.016
109
Barros, L., Carvalho, A. M., Morais, J. S., & Ferreira, I. C. F. R. (2010). Strawberry- tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120(1), 247–254.
https://doi.org/10.1016/j.foodchem.2009.10.016
Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R.
(2008). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856–3862. https://doi.org/10.1021/jf8003114
Bayram, T., Pekmez, M., Arda, N., & Yalçin, A. S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), 705–709. https://doi.org/10.1016/j.talanta.2007.12.007 Beaulieu, L., Thibodeau, J., Bryl, P., & Carbonneau, M. É. (2009). Proteolytic
processing of herring (Clupea harengus): Biochemical and nutritional characterisation of hydrolysates. International Journal of Food Science and Technology, 44(11), 2113–2119. https://doi.org/10.1111/j.1365-
2621.2009.02046.x
Bellary, A. N., & Rastogi, N. K. (2012). Effect of hypotonic and hypertonic solutions on impregnation of curcuminoids in coconut slices. Innovative Food Science and Emerging Technologies, 16, 33–40. https://doi.org/10.1016/j.ifset.2012.04.003 Benyakart, N., Phianmongkhol, A., & Wirjantoro, T. I. (2016). Effect of impregnation
solution ratio and periods on vacuum impregnated papaya, 21(2), 291–298.
Betoret, E., Sentandreu, E., Betoret, N., Codoñer-Franch, P., Valls-Bellés, V., &
Fito, P. (2012). Technological development and functional properties of an apple snack rich in flavonoid from mandarin juice. Innovative Food Science and Emerging Technologies, 16, 298–304. https://doi.org/10.1016/j.ifset.2012.07.003 Betoret, N., Puente, L., Díaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., … Fito,
P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2–3), 273–277.
https://doi.org/10.1016/S0260-8774(02)00268-6
Bindhumol, V., Chitra, K. C., & Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 188, 117–124.
https://doi.org/10.1016/S0300-483X(03)00056-8
Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., & Lercker, G. (2008). Phenolic content and antioxidant capacity versus consumer acceptance of soaked and vacuum impregnated frozen nectarines. European Food Research and Technology, 227(1), 191–197. https://doi.org/10.1007/s00217-007-0709-6 Borochov-Neori, H., Judeinstein, S., Greenberg, A., Fuhrman, B., Attias, J., Volkova,
N., … Aviram, M. (2008). Phenolic antioxidants and antiatherogenic effects of Marula (Sclerocarrya birrea Subsp. caffra) fruit juice in healthy humans.
Journal of Agricultural and Food Chemistry, 56(21), 9884–9891.
https://doi.org/10.1021/jf801467m
110
Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559–565.
https://doi.org/10.1016/j.foodchem.2009.05.021
Butkhup, L., & Samappito, S. (2008). Analysis of anthocyanin, flavonoids, and phenolic acids contents of 10 berries by RP-HPLC-DAD and their effect on antioxidant activity. International Journal of Fruit Science, 10, 1–17.
Charoensiri, R., Kongkachuichai, R., Suknicom, S., & Sungpuag, P. (2009). Beta- carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chemistry, 113(1), 202–207. https://doi.org/10.1016/j.foodchem.2008.07.074 Chauhan, O. P., Singh, A., Singh, A., Raju, P. S., & Bawa, A. S. (2011). Effects of osmotic agents on color, textural, structural, thermal, and sensory properties of apple slices. International Journal of Food Properties, 14(5), 1037–1048.
https://doi.org/10.1080/10942910903580884
Chen, M., Jiang, Q., Yin, X. R., Lin, Q., Chen, J. Y., Allan, A. C., … Chen, K. S.
(2012). Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae, 147, 118–125.
https://doi.org/10.1016/j.scienta.2012.09.011
Chiralt, A., & Fito, P. (2003). Transport mechanisms in osmotic dehydration: The role of structure. Food Science and Technology International, 9(3), 179–186.
https://doi.org/10.1177/108201303034757
Chomchalow, N., & Songkhla, P. N. (2008). Thai mango export : A slow-but- sustainable development. Agriculture, 12(1), 1–8.
Chong, C. H., Law, C. L., Figiel, A., Wojdylo, A., & Oziemblowski, M. (2013).
Color, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 141(4), 3889–3896.
https://doi.org/10.1016/j.foodchem.2013.06.042
Ciurzyńska, A., Lenart, A., & Greda, K. J. (2014). Effect of pre-treatment conditions on content and activity of water and color of freeze-dried pumpkin. LWT - Food Science and Technology, 59(2P1), 1075–1081.
https://doi.org/10.1016/j.lwt.2014.06.035
Corrêa, J. L. G., Ernesto, D. B., Alves, J. G. L. F., & Andrade, R. S. (2014).
Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin.
International Journal of Food Science and Technology, 49(9), 2008–2014.
https://doi.org/10.1111/ijfs.12502
Corrêa, J. L. G., Ernesto, D. B., & de Mendonça, K. S. (2016). Pulsed vacuum osmotic dehydration of tomatoes: Sodium incorporation reduction and kinetics modeling. LWT - Food Science and Technology, 71, 17–24.
https://doi.org/10.1016/j.lwt.2016.01.046
111
Corrêa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010).
Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas.
Journal of Food Engineering, 96(4), 498–504.
https://doi.org/10.1016/j.jfoodeng.2009.08.032
Cosmulescu, S., Trandafir, I., & Nour, V. (2017). Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties.
International Journal of Food Properties, 20(12), 3124–3134.
https://doi.org/10.1080/10942912.2016.1274906
Dasgupta, N., & De, B. (2004). Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chemistry, 88(2), 219–224.
https://doi.org/10.1016/j.foodchem.2004.01.036
de Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E.,
& de Souza, A. U. (2018). Pulsed vacuum osmotic dehydration of beetroot, carrot and eggplant slices: Effect of vacuum pressure on the quality parameters.
Food and Bioprocess Technology, 11(10), 1863–1875.
https://doi.org/10.1007/s11947-018-2147-9
de Lima, M. M., Tribuzi, G., de Souza, J. A. R., de Souza, I. G., Laurindo, J. B., &
Carciofi, B. A. M. (2016). Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT - Food Science and Technology, 72, 501–509.
https://doi.org/10.1016/j.lwt.2016.05.016
de Oliveira, L. F., Corrêa, J. L. G., de Angelis Pereira, M. C., de Lemos Souza Ramos, A., & Vilela, M. B. (2016). Osmotic dehydration of yacon (Smallanthus sonchifolius): Optimization for fructan retention. LWT - Food Science and Technology, 71, 77–87. https://doi.org/10.1016/j.lwt.2016.03.028
de Vasconcelos, M. do C. B. M., Bennett, R. N., Quideau, S., Jacquet, R., Rosa, E. A.
S., & Ferreira-Cardoso, J. V. (2010). Evaluating the potential of chestnut
(Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 31(2), 301–311.
https://doi.org/10.1016/j.indcrop.2009.11.008
Deng, Y., & Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound
osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41(9), 1575–1585. https://doi.org/10.1016/j.lwt.2007.10.018
Derossi, A., De, T., & Severini, C. (2012). The application of vacuum impregnation techniques in food industry. Scientific, Health and Social Aspects of the Food Industry. https://doi.org/10.5772/31435
Dugo, P., Giuffrida, D., Herrero, M., Donato, P., & Mondello, L. (2009).
Epoxycarotenoids esters analysis in intact orange juices using two-dimensional comprehensive liquid chromatography. Journal of Separation Science, 32(7), 973–980. https://doi.org/10.1002/jssc.200800696
112
Dugo, P., Herrero, M., Kumm, T., Giuffrida, D., Dugo, G., & Mondello, L. (2008).
Comprehensive normal-phase × reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin. Journal of Chromatography A, 1189(1–2), 196–206. https://doi.org/10.1016/j.chroma.2007.11.116
Emam-Djomeh, Z., Djelveh, G., & Gros, J. B. (2001). Osmotic dehydration of foods in a multicomponent solution part I. lowering of solute uptake in agar gels:
Diffusion considerations. LWT - Food Science and Technology, 34(5), 312–318.
https://doi.org/10.1006/fstl.2001.0776
Escriche, I., Garcia-Pinchi, R., Andrés, A., & Fito, P. (2000). Osmotic dehydration of kiwifruit (Actinidia chinensis): Fluxes and mass transfer kinetics. Journal of Food Process Engineering, 23(3), 191–205. https://doi.org/10.1111/j.1745- 4530.2000.tb00511.x
Fante, C., Corrêa, J., Natividade, M., Lima, J., & Lima, L. (2011). Drying of plums (Prunus sp, c.v Gulfblaze) treated with KCl in the field and subjected to pulsed vacuum osmotic dehydration. International Journal of Food Science and Technology, 46(5), 1080–1085. https://doi.org/10.1111/j.1365-
2621.2011.02619.x
Fellows, P. (2000). Food Processing Technology : Principles and Practice (2nd Ed).
Cambridge, England: Woodhead Publishing Limited and CRC press.
Fernández, P. R., Mascheroni, R. H., & Ramallo, L. A. (2019). Ascorbic acid and calcium uptake in pineapple tissue through different sucrose concentrations of impregnation solution. Journal of Food Engineering, 261, 150–157.
https://doi.org/10.1016/j.jfoodeng.2019.06.012
Ferrari, C. C., Carmello-Guerreiro, S. M., Bolini, H. M. A., & Hubinger, M. D.
(2010). Structural changes, mechanical properties and sensory preference of osmodehydrated melon pieces with sucrose and calcium lactate solutions.
International Journal of Food Properties, 13(1), 112–130.
https://doi.org/10.1080/10942910802227934
Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22, 313–328. https://doi.org/10.1016/b978-1-85861-037-5.50022-9 Fito, P., Andres, A., Chiralt, A., & Pardo, P. (1996). Coupling of hydrodynamic
mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering, 27, 229–240.
Fito, P., & Chiralt, A. (1997). Osmotic dehydration: an approach to the modeling of solid food-liquid operations. In P. Fito, E. Ortega., & G. Barbosa-Cánovas (Eds.), Food Engineering (pp. 231–252). New York: Chapman & Hall.
Fito, P., & Chiralt, A. (2000). Vacuum impregnation of plant tissues. In S. M.
Alzamora, M. S. Tapi, & A. Lopez-Malo (Eds.), Minimally Processed Fruits and Vegetables : Fundamental Aspects and Applications (pp. 189–204).
Gaithersburg: Aspen Publication.
113
Fito, P., Chiralt, A., Barat, J. M., Andres, A., Marttinez-Monzo, J., & Martinez- Navarrete, N. (2001a). Vacuum impregnation for development of new dehydrated products. Jounal of Food Engineering, 49, 297–302.
Fito, P., Chiralt, A., Betoret, N., Gras, M., Chafer, M., Martinez- Monzo, J., … Vidal, D. (2001b). Vacuum impregnation and osmotic dehydration in matrix
engineering application in functional fresh food development. Journal of Food Engineering, 49, 175–183.
Fito, P., Andres, A., Pastor, R., & Chiralt, A. (1994). Modelling of vacuum osmotic dehydration of food. In P. Singh & F. Oliveira (Eds.), Process Optimization and Minimal Processing of Foods (pp. 107–121). Boca Raton: CRC Press.
Furlani, R. P. Z., & Godoy, H. T. (2008). Vitamins B1 and B2 contents in cultivated mushrooms. Food Chemistry, 106(2), 816–819.
https://doi.org/10.1016/j.foodchem.2007.06.007
Galani, J. H. Y., Patel, J. S., Patel, N. J., & Talati, J. G. (2017). Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants, 6(3), 1–19. https://doi.org/10.3390/antiox6030059 Gebczyński, P., Skoczeń-SŁupska, R., & Kur, K. (2017). Effect of storage on the
content of selected antioxidants and quality attributes in convection and freeze- dried pears (Pyrus communis L.). Italian Journal of Food Science, 29(3), 454–462. https://doi.org/10.14674/IJFS-697
Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango.
Journal of Food Engineering, 58(1), 33–43. https://doi.org/10.1016/S0260- 8774(02)00331-X
González-Montelongo, R., Gloria Lobo, M., & González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry, 119(3), 1030–1039.
https://doi.org/10.1016/j.foodchem.2009.08.012
Gras, M. L., Vidal, D., Betoret, N., Chiralt, A., & Fito, P. (2003). Calcium
fortification of vegetables by vacuum impregnation: Interactions with cellular matrix. Journal of Food Engineering, 56(2–3), 279–284.
https://doi.org/10.1016/S0260-8774(02)00269-8
Guiamba, I., Ahrné, L., Khan, M. A. M., & Svanberg, U. (2016). Retention of β-carotene and vitamin C in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food and Bioproducts Processing, 98, 320–326. https://doi.org/10.1016/j.fbp.2016.02.010
Gümüşay, Ö. A., Borazan, A. A., Ercal, N., & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173,
156–162. https://doi.org/10.1016/j.foodchem.2014.09.162
114
Ha, T. Y., Ko, S. N., Lee, S. M., Kim, H. R., Chung, S. H., Kim, S. R., … Kim, I. H.
(2006). Changes in nutraceutical lipid components of rice at different degrees of milling. European Journal of Lipid Science and Technology, 108(3), 175–181.
https://doi.org/10.1002/ejlt.200500250
Halperin, S. J., & Koster, K. L. (2006). Sugar effects on membrane damage during desiccation of pea embryo protoplasts. Journal of Experimental Botany, 57(10), 2303–2311. https://doi.org/10.1093/jxb/erj208
Hii, C., & Law, C. L. (2010). Product quality evolution during drying of foods, vegetables and fruits. In S. V. Jangam, C. L. Law, & A. S. Mujumda (Eds.), Drying of Foods, Vegetables and Fruits (Volume 1) (pp. 125–144). Singapore.
Hironaka, K., Kikuchi, M., Koaze, H., Sato, T., Kojima, M., Yamamoto, K., … Tsuda, S. (2011). Ascorbic acid enrichment of whole potato tuber by vacuum- impregnation. Food Chemistry, 127(3), 1114–1118.
https://doi.org/10.1016/j.foodchem.2011.01.111
Huang, L. L., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. Journal of Food Engineering, 103(3), 279–284. https://doi.org/10.1016/j.jfoodeng.2010.10.025 Hymavathi, T. V., & Khader, V. (2005). Carotene, ascorbic acid and sugar content of
vacuum dehydrated ripe mango powders stored in flexible packaging material.
Journal of Food Composition and Analysis, 18(2–3), 181–192.
https://doi.org/10.1016/j.jfca.2004.03.028
Ispir, A., & Toǧrul, I. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166–180. https://doi.org/10.1016/j.cherd.2008.07.011
Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. D. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically
dehydrated mango slices. Drying Technology, 25(10), 1769–1777.
https://doi.org/10.1080/07373930701593263
Jacob, J. K., & Paliyath, G. (2012). Infusion of fruits with nutraceuticals and health regulatory components for enhanced functionality. Food Research International, 45(1), 93–102. https://doi.org/10.1016/j.foodres.2011.10.017
Jalaee, F., Fazeli, A., Fatemian, H., & Tavakolipour, H. (2011). Mass transfer coefficient and the characteristics of coated apples in osmotic dehydrating.
Food and Bioproducts Processing, 89(4), 367–374.
https://doi.org/10.1016/j.fbp.2010.09.012
Jalali, V. R. R., Narain, N., & Da Silva, G. F. (2008). Effect of osmotic
predehydration on drying characteristics of banana fruits. Ciencia E Tecnologia de Alimentos, 28(2), 269–273. https://doi.org/10.1590/S0101-
20612008000200002
Jiménez-Hernández, J., Estrada-Bahena, E. B., Maldonado-Astudillo, Y. I., Talavera- Mendoza, Ó., Arámbula-Villa, G., Azuara, E., … Salazar, R. (2017). Osmotic
115
dehydration of mango with impregnation of inulin and piquin-pepper oleoresin.
LWT - Food Science and Technology, 79, 609–615.
https://doi.org/10.1016/j.lwt.2016.11.016
Kamiloglu, S., & Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.):
Effect of sun-drying. International Journal of Food Properties, 18(3), 521–535.
https://doi.org/10.1080/10942912.2013.833522
Karathanos, V. T., Kostaropoulos, A. E., & Saravacos, G. D. (1995). Air-drying kinetics of osmotically dehydrated fruits. Drying Technology, 13(5–7), 1503–1521. https://doi.org/10.1080/07373939508917036
Kaymak-Ertekin, F., & Sultanoglu, M. (2000). Modelling of mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 46(4), 243–250.
https://doi.org/10.1016/S0260-8774(00)00084-4
Kim, H., Moon, J. Y., Kim, H., Lee, D. S., Cho, M., Choi, H. K., … Cho, S. K.
(2010). Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry, 121(2), 429–436.
https://doi.org/10.1016/j.foodchem.2009.12.060
Kim, Y., Brecht, J. K., & Talcott, S. T. (2007). Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chemistry, 105(4), 1327–1334.
https://doi.org/10.1016/j.foodchem.2007.03.050
Kim, Y., Lounds-Singleton, A. J., & Talcott, S. T. (2009). Antioxidant phytochemical and quality changes associated with hot water immersion treatment of mangoes (Mangifera indica L.). Food Chemistry, 115(3), 989–993.
https://doi.org/10.1016/j.foodchem.2009.01.019
Koster, K. L., Reisdorph, N., & Ramsay, J. L. (2003). Changing desiccation tolerance of pea embryo protoplasts during germination. Journal of Experimental Botany, 54(387), 1607–1614. https://doi.org/10.1093/jxb/erg170
Kowalska, H., Marzec, A., Kowalska, J., Ciurzyńska, A., Czajkowska, K., Cichowska, J., … Lenart, A. (2017). Osmotic dehydration of Honeoye
strawberries in solutions enriched with natural bioactive molecules. LWT - Food Science and Technology, 85, 500–505. https://doi.org/10.1016/j.lwt.2017.03.044 Kowalska, J., Kowalska, H., Marzec, A., Brzeziński, T., Samborska, K., & Lenart, A.
(2018). Dried strawberries as a high nutritional value fruit snack. Food Science and Biotechnology, 27(3), 799–807. https://doi.org/10.1007/s10068-018-0304-6 Krokida, M. K., & Maroulis, Z. B. (1997). Effect of drying method on shrinkage and
porosity. Drying Technology, 15(10), 2441–2458.
https://doi.org/10.1080/07373939708917369
Kumar, G., Kumar, A., Patel, R., & Manjappa, S. (2013). Determination of vitamin C in some fruits and vegetables in Davanagere city, (Karanataka) -India.
Internation Journal of Pharmacy & Life Sciences, 4(3), 2489–2491.
116
Lech, K., Michalska, A., Wojdyło, A., Nowicka, P., & Figiel, A. (2018). The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT - Food Science and Technology, 91(December 2017), 588–594. https://doi.org/10.1016/j.lwt.2018.02.012
Lenart, A., & Flink, J. M. (1984). Osmotic concentration of potato .I. Criteria for the end-point of the osmosis process. Journal of Food Technology, 19, 45–63.
Lenart, A., & Lewicki, P. (2006). Osmotic dehydration of fruits and vegetables.
In A. S. Mujumdar (Ed.), Handbook of industrial drying:Vols. 1 (3rd Ed).
CRC Press.
Lenart, A., & Lewicki, P. P. (1990). Osmotic dehydration of carrots at high temperature. In Engineering and Food Preservation Processes and Related Techniques (Vol. 2) (pp. 731–740). London: : Elsevier.
Lerici, C. R., Pinnavaia, G., ROSA, M. D., & Bartolucci, L. (1985). Osmotic
dehydration of fruit: Influence of osmotic agents on drying behavior and product quality. Journal of Food Science, 50(5), 1217–1219.
https://doi.org/10.1111/j.1365-2621.1985.tb10445.x
Li, S., Lo, C.-Y., & Ho, C.-T. (2006). Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54, 4176–4185.
Lin, X., Luo, C., & Chen, Y. (2016). Effects of vacuum impregnation with sucrose solution on mango tissue. Journal of Food Science, 81(6), 1412–1418.
https://doi.org/10.1111/1750-3841.13309
Link, J. V., Tribuzi, G., Oliveira de Moraes, J., & Laurindo, J. B. (2018). Assessment of texture and storage conditions of mangoes slices dried by a conductive multi- flash process. Journal of Food Engineering, 239, 8–14.
https://doi.org/10.1016/j.jfoodeng.2018.06.024
Liu, F. X., Fu, S. F., Bi, X. F., Chen, F., Liao, X. J., Hu, X. S., & Wu, J. H. (2013).
Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chemistry, 138(1), 396–405.
https://doi.org/10.1016/j.foodchem.2012.09.111
Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Phytochemicals and
antioxidant capacity of natural food colorant prepared from black waxy rice bran.
Food Bioscience, 15, 34–41. https://doi.org/10.1016/j.fbio.2016.04.003 Lozano, J. E., Rotstein, E., & Urbicain, M. J. (1980). Total porosity and open‐pore
porosity in the drying of fruits. Journal of Food Science, 45(5), 1403–1407.
https://doi.org/10.1111/j.1365-2621.1980.tb06564.x
Lu, M., Cheng, J., Lin, C., & Chang, C. (2010). Purification, structural elucidation, and anti-inflammatory effect of a water-soluble 1,6-branched 1,3-a-D-galactan from cultured mycelia of Poria cocos. Food Chemistry, 118(2), 349–356.
https://doi.org/10.1016/j.foodchem.2009.04.126
117
Maestrelli, A., Lo Scalzo, R., Lupi, D., Bertolo, G., & Torreggiani, D. (2001). Partial removal of water before freezing: Cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). Journal of Food Engineering, 49(2–3), 255–260. https://doi.org/10.1016/S0260-8774(00)00211-9 Maillard, M. N., & Berset, C. (1995). Evolution of antioxidant activity during kilning:
Role of insoluble bound phenolic acids of barley and malt.
Journal of Agricultural and Food Chemistry, 43(7), 1789–1793.
https://doi.org/10.1021/jf00055a008
Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2016). Recent advances in conventional drying of foods . Journal of Food Technology and Preservation, 1(1), 25–34.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jime, L. (2004). Polyphenols:
food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747.
Mandala, I. G., Anagnostaras, E. F., & Oikonomou, C. K. (2005). Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. Journal of Food Engineering, 69(3), 307–316.
https://doi.org/10.1016/j.jfoodeng.2004.08.021
Martínez-Monzó, J., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (1998).
Mechanical and structural changes in apple (var. Granny Smith) due to vacuum impregnation with cryoprotectants. Journal of Food Science, 63(3), 499–503.
https://doi.org/10.1111/j.1365-2621.1998.tb15772.x
Masibo, M., & Qian, H. (2008). Major mango polyphenols and their potential
significance to human health. Comprehensive Reviews in Food Science and Food Safety, 7(4), 309–319. https://doi.org/10.1111/j.1541-4337.2008.00047.x
Mauro, M. A., Dellarosa, N., Tylewicz, U., Tappi, S., Laghi, L., Rocculi, P., & Rosa, M. D. (2016). Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chemistry, 195, 19–28. https://doi.org/10.1016/j.foodchem.2015.04.096
Mavroudis, N. E., Dejmek, P., & Sjöholm, I. (2004). Osmotic-treatment-induced cell death and osmotic processing kinetics of apples with characterised raw material properties. Journal of Food Engineering, 63(1), 47–56.
https://doi.org/10.1016/S0260-8774(03)00281-4
Mavroudis, N. E., Gekas, V., & Sjöholm, I. (1998). Osmotic dehydration of apples - effects of agitation and raw material characteristics. Journal of Food
Engineering, 35(2), 191–209. https://doi.org/10.1016/S0260-8774(98)00015-6 Mavroudis, N. E., Gidley, M. J., & Sjöholm, I. (2012). Osmotic processing: Effects of
osmotic medium composition on the kinetics and texture of apple tissue.
Food Research International, 48(2), 839–847.
https://doi.org/10.1016/j.foodres.2012.06.034