• Tidak ada hasil yang ditemukan

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.2 Recommendations

5.2.1 Osmotic pretreatment was successfully applied to improve the nutrition of osmo-dehydrated mango and dried mango. However, the effect of processing fruits on the availability of nutrients such as carotenoids also requires further investigation.

5.2.2 The equipment used for the vacuum impregnation technique was only a lab scale unit. For industrial use, development on a larger scale will be required.

106

REFE REN CES

REFERENCES

107

REFERRENCES

Abraão, A. S., Lemos, A. M., Vilela, A., Sousa, J. M., & Nunes, F. M. (2013).

Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481–494.

https://doi.org/10.1016/j.fbp.2013.04.006

Agre, P., Bonhivers, M., & Borgnia, M. J. (1998). The aquaporins, blueprints for cellular plumbing systems. Journal of Biological Chemistry, 273(24), 14659–

14662. https://doi.org/10.1074/jbc.273.24.14659

Ahmadvand, H., Yalameha, B., Adibhesami, G., Nasri, M., Naderi, N.,

Babaeenezhad, E., & Nouryazdan, N. (2019). The protective role of gallic acid pretreatment on renal ischemia-reperfusion injury in rats. Reports of

Biochemistry & Molecular Biology, 8(1), 42–48.

Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43.

https://doi.org/10.1016/j.ifset.2016.01.003

Akbarian, M., Ghasemkhani, N., & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial : A review. International Journal of Biosciences, 4(1), 42–57.

Aktas, T., Ulger, P., Daglioglu, F., & Hasturk, F. (2013). Changes of nutritional and physical quality characteristics during storage of osmotic pretreated apple before hot air drying and sensory evaluation. Journal of Food Quality, 36(6), 411–425.

https://doi.org/10.1111/jfq.12062

Alam, M. S., Kaur, M., & Ramya, H. G. (2019). Mass transfer kinetics for osmotic dehydration of kinnow fruit in sugar solution. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 89(1), 361–370.

https://doi.org/10.1007/s40011-017-0951-z

Albanese, D., Cinquanta, L., Cuccurullo, G., & Di Matteo, M. (2013). Effects of microwave and hot-air drying methods on color, β-carotene and radical scavenging activity of apricots. International Journal of Food Science and Technology, 48(6), 1327–1333. https://doi.org/10.1111/ijfs.12095

Alighourchi, H., Barzegar, M., & Abbasi, S. (2008). Anthocyanins characterization of 15 Iranian pomegranate (Punica granatum L.) varieties and their variation after cold storage and pasteurization. European Food Research and Technology, 227(3), 881–887. https://doi.org/10.1007/s00217-007-0799-1

Almeida, J. A. R., Mussi, L. P., Oliveira, D. B., & Pereira, N. R. (2015). Effect of temperature and sucrose concentration on the retention of polyphenol

compounds and antioxidant activity of osmotically dehydrated bananas.

Journal of Food Processing and Preservation, 39(6), 1061–1069.

https://doi.org/10.1111/jfpp.12321

108

Anwar, F., Przybylski, R., Rudzinska, M., Gruczynska, E., & Bain, J. (2008). Fatty acid, tocopherol and sterol compositions of Canadian prairie fruit seed lipids.

JAOCS, Journal of the American Oil Chemists’ Society, 85(10), 953–959.

https://doi.org/10.1007/s11746-008-1276-0

AOAC. (2000). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.

AOAC. (2012). Method 984.27 Official Methods of Analysis. Gaithersburg, MD:

Association of Official Analytical Chemists.

Arauz, L. F. (2000). Mango anthracnose: Economic impact and current options for integrated management. Plant Disease, 84(6), 600–611.

Assous, M. T. M. (2014). Production and evaluation of partially air dehydrated and edible coated mango slices. Egyptian Journal of Agricultural Research, 92(2), 729–747.

Azarpazhooh, E., & Ramaswamy, H. S. (2010). Microwave-osmotic dehydration of apples under continuous flow medium spray conditions: Comparison with other methods. Drying Technology, 28(1), 49–56.

https://doi.org/10.1080/07373930903430611

Azuara, E., Garcia, H. S., & Beristain, C. I. (1996). Effect of the centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, 29(2), 195–199. https://doi.org/10.1016/0963-9969(96)00033-6

Bakowska-Barczak, A. M., Schieber, A., & Kolodziejczyk, P. (2009).

Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. Journal of Agricultural and Food Chemistry, 57(24), 11528–11536.

https://doi.org/10.1021/jf902161k

Barat, J. M., Chiralt, A., & Fito, P. (2001). Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Science and Technology International, 7(5), 451–456. https://doi.org/10.1106/4L77-UPTY-KEAQ-3TIV

Barraza-jáuregui, G., Vega, G., Valeriano, J., Obregón, J., Siche, R., & Miano, A. C.

(2017). Osmotic pretreatment to assure retention of phenolics and anthocyanins in berry jams. Food Bioscience, 17, 24–28.

https://doi.org/10.1016/j.fbio.2016.12.001

Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith):

Influence of operating variables on process kinetics and compositional changes.

Journal of Food Engineering, 92(4), 416–424.

https://doi.org/10.1016/j.jfoodeng.2008.12.034

Barrera, C., Betoret, N., & Fito, P. (2004). Ca2+ and Fe2+ influence on the osmotic dehydration kinetics of apple slices (var. Granny Smith). Journal of Food Engineering, 65(1), 9–14. https://doi.org/10.1016/j.jfoodeng.2003.10.016

109

Barros, L., Carvalho, A. M., Morais, J. S., & Ferreira, I. C. F. R. (2010). Strawberry- tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120(1), 247–254.

https://doi.org/10.1016/j.foodchem.2009.10.016

Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R.

(2008). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856–3862. https://doi.org/10.1021/jf8003114

Bayram, T., Pekmez, M., Arda, N., & Yalçin, A. S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), 705–709. https://doi.org/10.1016/j.talanta.2007.12.007 Beaulieu, L., Thibodeau, J., Bryl, P., & Carbonneau, M. É. (2009). Proteolytic

processing of herring (Clupea harengus): Biochemical and nutritional characterisation of hydrolysates. International Journal of Food Science and Technology, 44(11), 2113–2119. https://doi.org/10.1111/j.1365-

2621.2009.02046.x

Bellary, A. N., & Rastogi, N. K. (2012). Effect of hypotonic and hypertonic solutions on impregnation of curcuminoids in coconut slices. Innovative Food Science and Emerging Technologies, 16, 33–40. https://doi.org/10.1016/j.ifset.2012.04.003 Benyakart, N., Phianmongkhol, A., & Wirjantoro, T. I. (2016). Effect of impregnation

solution ratio and periods on vacuum impregnated papaya, 21(2), 291–298.

Betoret, E., Sentandreu, E., Betoret, N., Codoñer-Franch, P., Valls-Bellés, V., &

Fito, P. (2012). Technological development and functional properties of an apple snack rich in flavonoid from mandarin juice. Innovative Food Science and Emerging Technologies, 16, 298–304. https://doi.org/10.1016/j.ifset.2012.07.003 Betoret, N., Puente, L., Díaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., … Fito,

P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2–3), 273–277.

https://doi.org/10.1016/S0260-8774(02)00268-6

Bindhumol, V., Chitra, K. C., & Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 188, 117–124.

https://doi.org/10.1016/S0300-483X(03)00056-8

Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., & Lercker, G. (2008). Phenolic content and antioxidant capacity versus consumer acceptance of soaked and vacuum impregnated frozen nectarines. European Food Research and Technology, 227(1), 191–197. https://doi.org/10.1007/s00217-007-0709-6 Borochov-Neori, H., Judeinstein, S., Greenberg, A., Fuhrman, B., Attias, J., Volkova,

N., … Aviram, M. (2008). Phenolic antioxidants and antiatherogenic effects of Marula (Sclerocarrya birrea Subsp. caffra) fruit juice in healthy humans.

Journal of Agricultural and Food Chemistry, 56(21), 9884–9891.

https://doi.org/10.1021/jf801467m

110

Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559–565.

https://doi.org/10.1016/j.foodchem.2009.05.021

Butkhup, L., & Samappito, S. (2008). Analysis of anthocyanin, flavonoids, and phenolic acids contents of 10 berries by RP-HPLC-DAD and their effect on antioxidant activity. International Journal of Fruit Science, 10, 1–17.

Charoensiri, R., Kongkachuichai, R., Suknicom, S., & Sungpuag, P. (2009). Beta- carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chemistry, 113(1), 202–207. https://doi.org/10.1016/j.foodchem.2008.07.074 Chauhan, O. P., Singh, A., Singh, A., Raju, P. S., & Bawa, A. S. (2011). Effects of osmotic agents on color, textural, structural, thermal, and sensory properties of apple slices. International Journal of Food Properties, 14(5), 1037–1048.

https://doi.org/10.1080/10942910903580884

Chen, M., Jiang, Q., Yin, X. R., Lin, Q., Chen, J. Y., Allan, A. C., … Chen, K. S.

(2012). Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae, 147, 118–125.

https://doi.org/10.1016/j.scienta.2012.09.011

Chiralt, A., & Fito, P. (2003). Transport mechanisms in osmotic dehydration: The role of structure. Food Science and Technology International, 9(3), 179–186.

https://doi.org/10.1177/108201303034757

Chomchalow, N., & Songkhla, P. N. (2008). Thai mango export : A slow-but- sustainable development. Agriculture, 12(1), 1–8.

Chong, C. H., Law, C. L., Figiel, A., Wojdylo, A., & Oziemblowski, M. (2013).

Color, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 141(4), 3889–3896.

https://doi.org/10.1016/j.foodchem.2013.06.042

Ciurzyńska, A., Lenart, A., & Greda, K. J. (2014). Effect of pre-treatment conditions on content and activity of water and color of freeze-dried pumpkin. LWT - Food Science and Technology, 59(2P1), 1075–1081.

https://doi.org/10.1016/j.lwt.2014.06.035

Corrêa, J. L. G., Ernesto, D. B., Alves, J. G. L. F., & Andrade, R. S. (2014).

Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin.

International Journal of Food Science and Technology, 49(9), 2008–2014.

https://doi.org/10.1111/ijfs.12502

Corrêa, J. L. G., Ernesto, D. B., & de Mendonça, K. S. (2016). Pulsed vacuum osmotic dehydration of tomatoes: Sodium incorporation reduction and kinetics modeling. LWT - Food Science and Technology, 71, 17–24.

https://doi.org/10.1016/j.lwt.2016.01.046

111

Corrêa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010).

Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas.

Journal of Food Engineering, 96(4), 498–504.

https://doi.org/10.1016/j.jfoodeng.2009.08.032

Cosmulescu, S., Trandafir, I., & Nour, V. (2017). Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties.

International Journal of Food Properties, 20(12), 3124–3134.

https://doi.org/10.1080/10942912.2016.1274906

Dasgupta, N., & De, B. (2004). Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chemistry, 88(2), 219–224.

https://doi.org/10.1016/j.foodchem.2004.01.036

de Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E.,

& de Souza, A. U. (2018). Pulsed vacuum osmotic dehydration of beetroot, carrot and eggplant slices: Effect of vacuum pressure on the quality parameters.

Food and Bioprocess Technology, 11(10), 1863–1875.

https://doi.org/10.1007/s11947-018-2147-9

de Lima, M. M., Tribuzi, G., de Souza, J. A. R., de Souza, I. G., Laurindo, J. B., &

Carciofi, B. A. M. (2016). Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT - Food Science and Technology, 72, 501–509.

https://doi.org/10.1016/j.lwt.2016.05.016

de Oliveira, L. F., Corrêa, J. L. G., de Angelis Pereira, M. C., de Lemos Souza Ramos, A., & Vilela, M. B. (2016). Osmotic dehydration of yacon (Smallanthus sonchifolius): Optimization for fructan retention. LWT - Food Science and Technology, 71, 77–87. https://doi.org/10.1016/j.lwt.2016.03.028

de Vasconcelos, M. do C. B. M., Bennett, R. N., Quideau, S., Jacquet, R., Rosa, E. A.

S., & Ferreira-Cardoso, J. V. (2010). Evaluating the potential of chestnut

(Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 31(2), 301–311.

https://doi.org/10.1016/j.indcrop.2009.11.008

Deng, Y., & Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound

osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41(9), 1575–1585. https://doi.org/10.1016/j.lwt.2007.10.018

Derossi, A., De, T., & Severini, C. (2012). The application of vacuum impregnation techniques in food industry. Scientific, Health and Social Aspects of the Food Industry. https://doi.org/10.5772/31435

Dugo, P., Giuffrida, D., Herrero, M., Donato, P., & Mondello, L. (2009).

Epoxycarotenoids esters analysis in intact orange juices using two-dimensional comprehensive liquid chromatography. Journal of Separation Science, 32(7), 973–980. https://doi.org/10.1002/jssc.200800696

112

Dugo, P., Herrero, M., Kumm, T., Giuffrida, D., Dugo, G., & Mondello, L. (2008).

Comprehensive normal-phase × reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin. Journal of Chromatography A, 1189(1–2), 196–206. https://doi.org/10.1016/j.chroma.2007.11.116

Emam-Djomeh, Z., Djelveh, G., & Gros, J. B. (2001). Osmotic dehydration of foods in a multicomponent solution part I. lowering of solute uptake in agar gels:

Diffusion considerations. LWT - Food Science and Technology, 34(5), 312–318.

https://doi.org/10.1006/fstl.2001.0776

Escriche, I., Garcia-Pinchi, R., Andrés, A., & Fito, P. (2000). Osmotic dehydration of kiwifruit (Actinidia chinensis): Fluxes and mass transfer kinetics. Journal of Food Process Engineering, 23(3), 191–205. https://doi.org/10.1111/j.1745- 4530.2000.tb00511.x

Fante, C., Corrêa, J., Natividade, M., Lima, J., & Lima, L. (2011). Drying of plums (Prunus sp, c.v Gulfblaze) treated with KCl in the field and subjected to pulsed vacuum osmotic dehydration. International Journal of Food Science and Technology, 46(5), 1080–1085. https://doi.org/10.1111/j.1365-

2621.2011.02619.x

Fellows, P. (2000). Food Processing Technology : Principles and Practice (2nd Ed).

Cambridge, England: Woodhead Publishing Limited and CRC press.

Fernández, P. R., Mascheroni, R. H., & Ramallo, L. A. (2019). Ascorbic acid and calcium uptake in pineapple tissue through different sucrose concentrations of impregnation solution. Journal of Food Engineering, 261, 150–157.

https://doi.org/10.1016/j.jfoodeng.2019.06.012

Ferrari, C. C., Carmello-Guerreiro, S. M., Bolini, H. M. A., & Hubinger, M. D.

(2010). Structural changes, mechanical properties and sensory preference of osmodehydrated melon pieces with sucrose and calcium lactate solutions.

International Journal of Food Properties, 13(1), 112–130.

https://doi.org/10.1080/10942910802227934

Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22, 313–328. https://doi.org/10.1016/b978-1-85861-037-5.50022-9 Fito, P., Andres, A., Chiralt, A., & Pardo, P. (1996). Coupling of hydrodynamic

mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering, 27, 229–240.

Fito, P., & Chiralt, A. (1997). Osmotic dehydration: an approach to the modeling of solid food-liquid operations. In P. Fito, E. Ortega., & G. Barbosa-Cánovas (Eds.), Food Engineering (pp. 231–252). New York: Chapman & Hall.

Fito, P., & Chiralt, A. (2000). Vacuum impregnation of plant tissues. In S. M.

Alzamora, M. S. Tapi, & A. Lopez-Malo (Eds.), Minimally Processed Fruits and Vegetables : Fundamental Aspects and Applications (pp. 189–204).

Gaithersburg: Aspen Publication.

113

Fito, P., Chiralt, A., Barat, J. M., Andres, A., Marttinez-Monzo, J., & Martinez- Navarrete, N. (2001a). Vacuum impregnation for development of new dehydrated products. Jounal of Food Engineering, 49, 297–302.

Fito, P., Chiralt, A., Betoret, N., Gras, M., Chafer, M., Martinez- Monzo, J., … Vidal, D. (2001b). Vacuum impregnation and osmotic dehydration in matrix

engineering application in functional fresh food development. Journal of Food Engineering, 49, 175–183.

Fito, P., Andres, A., Pastor, R., & Chiralt, A. (1994). Modelling of vacuum osmotic dehydration of food. In P. Singh & F. Oliveira (Eds.), Process Optimization and Minimal Processing of Foods (pp. 107–121). Boca Raton: CRC Press.

Furlani, R. P. Z., & Godoy, H. T. (2008). Vitamins B1 and B2 contents in cultivated mushrooms. Food Chemistry, 106(2), 816–819.

https://doi.org/10.1016/j.foodchem.2007.06.007

Galani, J. H. Y., Patel, J. S., Patel, N. J., & Talati, J. G. (2017). Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants, 6(3), 1–19. https://doi.org/10.3390/antiox6030059 Gebczyński, P., Skoczeń-SŁupska, R., & Kur, K. (2017). Effect of storage on the

content of selected antioxidants and quality attributes in convection and freeze- dried pears (Pyrus communis L.). Italian Journal of Food Science, 29(3), 454–462. https://doi.org/10.14674/IJFS-697

Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango.

Journal of Food Engineering, 58(1), 33–43. https://doi.org/10.1016/S0260- 8774(02)00331-X

González-Montelongo, R., Gloria Lobo, M., & González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry, 119(3), 1030–1039.

https://doi.org/10.1016/j.foodchem.2009.08.012

Gras, M. L., Vidal, D., Betoret, N., Chiralt, A., & Fito, P. (2003). Calcium

fortification of vegetables by vacuum impregnation: Interactions with cellular matrix. Journal of Food Engineering, 56(2–3), 279–284.

https://doi.org/10.1016/S0260-8774(02)00269-8

Guiamba, I., Ahrné, L., Khan, M. A. M., & Svanberg, U. (2016). Retention of β-carotene and vitamin C in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food and Bioproducts Processing, 98, 320–326. https://doi.org/10.1016/j.fbp.2016.02.010

Gümüşay, Ö. A., Borazan, A. A., Ercal, N., & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173,

156–162. https://doi.org/10.1016/j.foodchem.2014.09.162

114

Ha, T. Y., Ko, S. N., Lee, S. M., Kim, H. R., Chung, S. H., Kim, S. R., … Kim, I. H.

(2006). Changes in nutraceutical lipid components of rice at different degrees of milling. European Journal of Lipid Science and Technology, 108(3), 175–181.

https://doi.org/10.1002/ejlt.200500250

Halperin, S. J., & Koster, K. L. (2006). Sugar effects on membrane damage during desiccation of pea embryo protoplasts. Journal of Experimental Botany, 57(10), 2303–2311. https://doi.org/10.1093/jxb/erj208

Hii, C., & Law, C. L. (2010). Product quality evolution during drying of foods, vegetables and fruits. In S. V. Jangam, C. L. Law, & A. S. Mujumda (Eds.), Drying of Foods, Vegetables and Fruits (Volume 1) (pp. 125–144). Singapore.

Hironaka, K., Kikuchi, M., Koaze, H., Sato, T., Kojima, M., Yamamoto, K., … Tsuda, S. (2011). Ascorbic acid enrichment of whole potato tuber by vacuum- impregnation. Food Chemistry, 127(3), 1114–1118.

https://doi.org/10.1016/j.foodchem.2011.01.111

Huang, L. L., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. Journal of Food Engineering, 103(3), 279–284. https://doi.org/10.1016/j.jfoodeng.2010.10.025 Hymavathi, T. V., & Khader, V. (2005). Carotene, ascorbic acid and sugar content of

vacuum dehydrated ripe mango powders stored in flexible packaging material.

Journal of Food Composition and Analysis, 18(2–3), 181–192.

https://doi.org/10.1016/j.jfca.2004.03.028

Ispir, A., & Toǧrul, I. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166–180. https://doi.org/10.1016/j.cherd.2008.07.011

Ito, A. P., Tonon, R. V., Park, K. J., & Hubinger, M. D. (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically

dehydrated mango slices. Drying Technology, 25(10), 1769–1777.

https://doi.org/10.1080/07373930701593263

Jacob, J. K., & Paliyath, G. (2012). Infusion of fruits with nutraceuticals and health regulatory components for enhanced functionality. Food Research International, 45(1), 93–102. https://doi.org/10.1016/j.foodres.2011.10.017

Jalaee, F., Fazeli, A., Fatemian, H., & Tavakolipour, H. (2011). Mass transfer coefficient and the characteristics of coated apples in osmotic dehydrating.

Food and Bioproducts Processing, 89(4), 367–374.

https://doi.org/10.1016/j.fbp.2010.09.012

Jalali, V. R. R., Narain, N., & Da Silva, G. F. (2008). Effect of osmotic

predehydration on drying characteristics of banana fruits. Ciencia E Tecnologia de Alimentos, 28(2), 269–273. https://doi.org/10.1590/S0101-

20612008000200002

Jiménez-Hernández, J., Estrada-Bahena, E. B., Maldonado-Astudillo, Y. I., Talavera- Mendoza, Ó., Arámbula-Villa, G., Azuara, E., … Salazar, R. (2017). Osmotic

115

dehydration of mango with impregnation of inulin and piquin-pepper oleoresin.

LWT - Food Science and Technology, 79, 609–615.

https://doi.org/10.1016/j.lwt.2016.11.016

Kamiloglu, S., & Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.):

Effect of sun-drying. International Journal of Food Properties, 18(3), 521–535.

https://doi.org/10.1080/10942912.2013.833522

Karathanos, V. T., Kostaropoulos, A. E., & Saravacos, G. D. (1995). Air-drying kinetics of osmotically dehydrated fruits. Drying Technology, 13(5–7), 1503–1521. https://doi.org/10.1080/07373939508917036

Kaymak-Ertekin, F., & Sultanoglu, M. (2000). Modelling of mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 46(4), 243–250.

https://doi.org/10.1016/S0260-8774(00)00084-4

Kim, H., Moon, J. Y., Kim, H., Lee, D. S., Cho, M., Choi, H. K., … Cho, S. K.

(2010). Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry, 121(2), 429–436.

https://doi.org/10.1016/j.foodchem.2009.12.060

Kim, Y., Brecht, J. K., & Talcott, S. T. (2007). Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chemistry, 105(4), 1327–1334.

https://doi.org/10.1016/j.foodchem.2007.03.050

Kim, Y., Lounds-Singleton, A. J., & Talcott, S. T. (2009). Antioxidant phytochemical and quality changes associated with hot water immersion treatment of mangoes (Mangifera indica L.). Food Chemistry, 115(3), 989–993.

https://doi.org/10.1016/j.foodchem.2009.01.019

Koster, K. L., Reisdorph, N., & Ramsay, J. L. (2003). Changing desiccation tolerance of pea embryo protoplasts during germination. Journal of Experimental Botany, 54(387), 1607–1614. https://doi.org/10.1093/jxb/erg170

Kowalska, H., Marzec, A., Kowalska, J., Ciurzyńska, A., Czajkowska, K., Cichowska, J., … Lenart, A. (2017). Osmotic dehydration of Honeoye

strawberries in solutions enriched with natural bioactive molecules. LWT - Food Science and Technology, 85, 500–505. https://doi.org/10.1016/j.lwt.2017.03.044 Kowalska, J., Kowalska, H., Marzec, A., Brzeziński, T., Samborska, K., & Lenart, A.

(2018). Dried strawberries as a high nutritional value fruit snack. Food Science and Biotechnology, 27(3), 799–807. https://doi.org/10.1007/s10068-018-0304-6 Krokida, M. K., & Maroulis, Z. B. (1997). Effect of drying method on shrinkage and

porosity. Drying Technology, 15(10), 2441–2458.

https://doi.org/10.1080/07373939708917369

Kumar, G., Kumar, A., Patel, R., & Manjappa, S. (2013). Determination of vitamin C in some fruits and vegetables in Davanagere city, (Karanataka) -India.

Internation Journal of Pharmacy & Life Sciences, 4(3), 2489–2491.

116

Lech, K., Michalska, A., Wojdyło, A., Nowicka, P., & Figiel, A. (2018). The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT - Food Science and Technology, 91(December 2017), 588–594. https://doi.org/10.1016/j.lwt.2018.02.012

Lenart, A., & Flink, J. M. (1984). Osmotic concentration of potato .I. Criteria for the end-point of the osmosis process. Journal of Food Technology, 19, 45–63.

Lenart, A., & Lewicki, P. (2006). Osmotic dehydration of fruits and vegetables.

In A. S. Mujumdar (Ed.), Handbook of industrial drying:Vols. 1 (3rd Ed).

CRC Press.

Lenart, A., & Lewicki, P. P. (1990). Osmotic dehydration of carrots at high temperature. In Engineering and Food Preservation Processes and Related Techniques (Vol. 2) (pp. 731–740). London: : Elsevier.

Lerici, C. R., Pinnavaia, G., ROSA, M. D., & Bartolucci, L. (1985). Osmotic

dehydration of fruit: Influence of osmotic agents on drying behavior and product quality. Journal of Food Science, 50(5), 1217–1219.

https://doi.org/10.1111/j.1365-2621.1985.tb10445.x

Li, S., Lo, C.-Y., & Ho, C.-T. (2006). Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54, 4176–4185.

Lin, X., Luo, C., & Chen, Y. (2016). Effects of vacuum impregnation with sucrose solution on mango tissue. Journal of Food Science, 81(6), 1412–1418.

https://doi.org/10.1111/1750-3841.13309

Link, J. V., Tribuzi, G., Oliveira de Moraes, J., & Laurindo, J. B. (2018). Assessment of texture and storage conditions of mangoes slices dried by a conductive multi- flash process. Journal of Food Engineering, 239, 8–14.

https://doi.org/10.1016/j.jfoodeng.2018.06.024

Liu, F. X., Fu, S. F., Bi, X. F., Chen, F., Liao, X. J., Hu, X. S., & Wu, J. H. (2013).

Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chemistry, 138(1), 396–405.

https://doi.org/10.1016/j.foodchem.2012.09.111

Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Phytochemicals and

antioxidant capacity of natural food colorant prepared from black waxy rice bran.

Food Bioscience, 15, 34–41. https://doi.org/10.1016/j.fbio.2016.04.003 Lozano, J. E., Rotstein, E., & Urbicain, M. J. (1980). Total porosity and open‐pore

porosity in the drying of fruits. Journal of Food Science, 45(5), 1403–1407.

https://doi.org/10.1111/j.1365-2621.1980.tb06564.x

Lu, M., Cheng, J., Lin, C., & Chang, C. (2010). Purification, structural elucidation, and anti-inflammatory effect of a water-soluble 1,6-branched 1,3-a-D-galactan from cultured mycelia of Poria cocos. Food Chemistry, 118(2), 349–356.

https://doi.org/10.1016/j.foodchem.2009.04.126

117

Maestrelli, A., Lo Scalzo, R., Lupi, D., Bertolo, G., & Torreggiani, D. (2001). Partial removal of water before freezing: Cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). Journal of Food Engineering, 49(2–3), 255–260. https://doi.org/10.1016/S0260-8774(00)00211-9 Maillard, M. N., & Berset, C. (1995). Evolution of antioxidant activity during kilning:

Role of insoluble bound phenolic acids of barley and malt.

Journal of Agricultural and Food Chemistry, 43(7), 1789–1793.

https://doi.org/10.1021/jf00055a008

Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2016). Recent advances in conventional drying of foods . Journal of Food Technology and Preservation, 1(1), 25–34.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jime, L. (2004). Polyphenols:

food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747.

Mandala, I. G., Anagnostaras, E. F., & Oikonomou, C. K. (2005). Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. Journal of Food Engineering, 69(3), 307–316.

https://doi.org/10.1016/j.jfoodeng.2004.08.021

Martínez-Monzó, J., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (1998).

Mechanical and structural changes in apple (var. Granny Smith) due to vacuum impregnation with cryoprotectants. Journal of Food Science, 63(3), 499–503.

https://doi.org/10.1111/j.1365-2621.1998.tb15772.x

Masibo, M., & Qian, H. (2008). Major mango polyphenols and their potential

significance to human health. Comprehensive Reviews in Food Science and Food Safety, 7(4), 309–319. https://doi.org/10.1111/j.1541-4337.2008.00047.x

Mauro, M. A., Dellarosa, N., Tylewicz, U., Tappi, S., Laghi, L., Rocculi, P., & Rosa, M. D. (2016). Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chemistry, 195, 19–28. https://doi.org/10.1016/j.foodchem.2015.04.096

Mavroudis, N. E., Dejmek, P., & Sjöholm, I. (2004). Osmotic-treatment-induced cell death and osmotic processing kinetics of apples with characterised raw material properties. Journal of Food Engineering, 63(1), 47–56.

https://doi.org/10.1016/S0260-8774(03)00281-4

Mavroudis, N. E., Gekas, V., & Sjöholm, I. (1998). Osmotic dehydration of apples - effects of agitation and raw material characteristics. Journal of Food

Engineering, 35(2), 191–209. https://doi.org/10.1016/S0260-8774(98)00015-6 Mavroudis, N. E., Gidley, M. J., & Sjöholm, I. (2012). Osmotic processing: Effects of

osmotic medium composition on the kinetics and texture of apple tissue.

Food Research International, 48(2), 839–847.

https://doi.org/10.1016/j.foodres.2012.06.034

Dokumen terkait