ประมวลรายวิชา (Course Syllabus)
1. รหัสวิชา (Course Number) 2301620 2. จํานวนหนวยกิต (Course Credit) 3 หนวยกิต
3. ชื่อวิชา (Course Title) Mathematical Analysis 4. คณะ/ภาควิชา (Faculty / Department) วิทยาศาสตร / คณิตศาสตร
5. ภาคการศึกษา ( Semester ) ตน 6. ปการศึกษา (Academic Year) 2551
7. ชื่อผูสอน (Instructor / Academic Staff) อ.ดร.ณัฐกาญจน ใจดี
8. เงื่อนไขรายวิชา (Condition)
8.1 วิชาที่ตองเรียนมากอน (Prerequisite) _ 8.2 วิชาบังคับรวม (Corequisite) _
8.3 วิชาควบ (Concurrent) _
9. สถานภาพของวิชา ( Status ) วิชาเลือก
10.ชื่อหลักสูตร (Curriculum) วท.ม.( คณิตศาสตร) 11.วิชาระดับ (Degree) ปริญญาโท
12.จํานวนชั่วโมงที่สอน/สัปดาห (Hours / Week) 3 ชั่วโมง 13. เนื้อหารายวิชา (Course Description)
The real number system; metric topology; sequences and series of real numbers ; continuity; differentiation; Riemann integration; uniform convergence; the Arzela-Ascoli Theorem; the Stone-Weierstrass.
14. ประมวลการเรียนรายวิชา (Course Outline)
14.1 วัตถุประสงคทั่วไปและ/หรือวัตถุประสงคเชิงพฤติกรรม (Learning Objectives / Behavioral Objectives)
เมื่อนิสิตเรียนวิชานี้แลวจะสามารถพิสูจนขอความเกี่ยวกับ 1. จํานวนจริงโดยใชสัจจพจนและทฤษฎีบท
2. เซตกระชับ เซตเชื่อมโยงในปริภูมิ เมตริก 3. ลําดับและอนุกรมของจํานวนจริง 4. ฟงชันตอเนื่องบนปริภูมิเมตริก
5. อนุพันธของฟงชันคาจริงและคาเวกเตอร
6. ปริพันธเชิงรีมันน
7. การลูเขาเอกรูป
14.2 เนื้อหารายวิชาตอสัปดาห (Learning Contents)
1. The Real Number Systems (2 ชั่วโมง)
1.1 Ordered Field Axioms 1.2 The Well-Ordering Principle 1.3 The Completeness Axiom
1.4 The Extended Real Number System 1.5 The Complex Field
1.6 Euclidean Spaces
2. Basic Topology (5 ชั่วโมง)
2.1 Metric Spaces 2.2 Compact Sets 2.3 Connected Sets
3. Sequences and Series (5 ชั่วโมง)
3.1 Convergent Sequences 3.2 Cauchy Sequences 3.3 Series
3.4 Absolute Convergence
4. Continuity (7 ชั่วโมง)
4.1 Limit of Functions 4.2 Continuous Functions
4.3 Continuity and Compactness 4.4 Continuity and Connectedness
5. Differentiation (8 ชั่วโมง)
5.1 The Derivative of a Real Function 5.2 Mean Value Theorems
5.3 The Continuity of Derivatives
5.4 Differentiation of Vector-valued Functions
6. The Riemann-Stieltjes Integral (6 ชั่วโมง) 6.1 Definition and Existence of the Integral
6.2 Properties of the Integral 6.3 Integration and Differentiation
6.4 Integration of Vector-valued Functions
7. Sequences and Series of Functions (12 ชั่วโมง) 7.1 Uniform Convergence
7.2 Uniform Convergence and Continuity 7.3 Arzela-Ascoli Theorem
7.4 The Stone-Weierstrass Theorem 14.3 วิธีจัดการเรียนการสอน (Method)
; การบรรยาย (Lecture) รอยละ 60
; การบรรยายเชิงอภิปราย (Lecture and discussion) รอยละ 40 14.4 สื่อการสอน (Media)
; แผนใสและแผนทึบ (Transparencies and opaque sheets)
; สื่ออิเล็กทรอนิกส / เว็บไซต (Electronics and website media) http://pioneer.netserv.chula.ac.th/~cnattaka/2301620
14.5 การมอบหมายงาน ผานระบบเครือขาย (Assigment through Network System) 14.5.1 ขอกําหนดวิธีการมอบหมายงาน และสงงาน (Assigning and Submitting Method)
มอบหมายงานผานทางเวปไซต
14.5.2 ระบบจัดการการเรียนรูที่ใช (Learning Management System) ไมมี
14.6 การวัดผลการเรียน (Evaluation)
14.6.1 การประเมินความรูทางวิชาการ รอยละ 90
สอบกลางภาคครั้งที่ 1 รอยละ 25
สอบกลางภาคครั้งที่ 2 รอยละ 25
สอบปลายภาค รอยละ 40
14.6.2 การประเมินผลงานที่ไดมอบหมาย รอยละ 10 15. รายชื่อหนังสืออานประกอบ (Reading List)
15.1 หนังสือบังคับ (Required Text) ไมมี
15.2 หนังสืออานเพิ่มเติม (Supplementary Texts)
1. Barbenec R. L., Introduction to Real Analysis, PWS-Kent, 1990, 2 Bartle R. S., Element of Real Analysis, John Wiley Sons, Inc.,1982, 3. Rudin W., Principles of Mathematical Analysis, Tokyo, McGraw-Hill, 1964 4. Wade W.R., An Introduction to Analysis , Prentice-Hall, 1995.
16. การประเมินผลการสอน (Teacher Evaluation) โปรดระบุการดําเนินการในเรื่องตางๆ ดังนี้
16.1 การประเมินการสอน ใชรูปแบบใดจาก 12 รูปแบบ ของมหาวิทยาลัย หรือรูปแบบอื่น ใชรูปแบบ 08
16.2 การปรับปรุงจากผลการประเมินการสอนครั้งที่ผานมา
ไดทําเอกสารประกอบการสอนของเนื้อหาทั้งหมดใหนิสิตตั้งแตการเรียนในชั่วโมงแรกเพื่อใหนิสิต สามารถใชประกอบการศึกษาลวงหนากอนและระหวางการเขาหองเรียน
16.3 การอภิปรายหรือการวิเคราะหที่เสริมสรางคุณลักษณะที่พึงประสงคของบัณฑิต จุฬาลงกรณมหาวิทยาลัย (ระบุวาไดดําเนินการคุณลักษณะดานใด ซึ่งมหาวิทยาลัยกําหนด คุณลักษณะ 4 ดาน ไดแก สติปญญาและวิชาการ ทักษะและวิชาชีพ คุณธรรม และสังคม) มีการอภิปรายและสอดแทรกแงคิดเพื่อเสริมสรางคุณลักษณะทุกดานที่บัณฑิตพึงมี
หมายเหตุ อาจมีการเปลี่ยนแปลงบางเล็กนอยตามความเหมาะสม