Calculus I Practice problem set 9: Inverse Trigonometric Functions, Hyperbolic Functions.
1. Find the exact value of each expression.
(a) sin−1
( )
1/2 (b) arctan( )
−1 (c) sec−1( )
2(d) arcsin
( )
1 (e) tan−1(
tan3π 4)
(f) cos(
arcsin1 2)
2. Find the derivative of the function.
(a) y= tan−1x (b) h(x)= 1−x2 arcsinx (c) f(x)= xln
(
arctanx)
(d) h(t)=esec−1t (e) y= xcos−1x− 1−x2 (f) y=tan−1
(
x− 1+x2)
3. Evaluate the integral.
(a)
∫
1 +0
2 1
4 dt
t (b)
∫
− 24 1 t
dt (c)
∫
2 +0
cos2
1
π sin
xdx x
(d)
∫
tan1+−x12xdx (e)∫
− dxx
x 4
1
2 (f)
∫
− dxe e
x x
4 2
1 4. Find the numerical value of each expression.
(a) tanh0 (b) tanh1 (c) cosh3 (d) sinh1 (e) cosh(ln3) (f) sinh−11 5. Find the derivative.
(a) f(x)=tanh4x (b) g(x)=sinh2 x (c) F(x)=sinhxtanhx (d) f(t)=etsech t (e) f(t)=ln(sinht) (f) y=sinh(coshx) 6. Evaluate the integral.
(a)
∫
sinh(
1+4x)
dx (b)∫
tanhxdx (c)∫
2sec+tanhh2xxdx(d)
∫
+1 16t2
dt (e)
∫
4−1x2 dx (f)∫
+ dxx2 9 1
1
Derivatives of Inverse Trigonometric Functions
( )
2 1
1 sin 1
x dx x
d
= −
−
( )
2 1
1 cos 1
x dx x
d
− −
− =
(
1)
21 tan 1
x x dx
d
= +
−
( )
1 csc 1
2 1
− −
=
−
x x dx x
d
( )
1 sec 1
2 1
= −
−
x x dx x
d
(
1)
21 cot 1
x x dx
d
− +
=
−
Hyperbolic Functions:
sinh 2
x
x e
x e
− −
= ,
cosh 2
x
x e
x e
+ −
= Derivatives of Hyperbolic Functions
(
1)
21 sinh 1
x dx x
d
= +
−
( )
1 cosh 1
2 1
= −
−
x dx x
d
(
1)
21 tanh 1
x x dx
d
= −
−
( )
1 csch 1
2 1
− +
− =
x x dx x
d
( )
2 1
1 sech 1
x dx x
d
− −
− =
(
1)
21 coth 1
x x dx
d
= −
−
Homework 9: Due next Wednesday before class time.
Problem 31,33,35,37,55,57,59,61 on page 492-493.
Problem 23,25,27,29,59,61,63,65 on page 484-485