• Tidak ada hasil yang ditemukan

Method of Applied Math

N/A
N/A
Protected

Academic year: 2024

Membagikan "Method of Applied Math"

Copied!
21
0
0

Teks penuh

(1)

Lecture 1 Sujin Khomrutai – 1 / 21

Method of Applied Math

Lecture 6: Laplace Transform

Sujin Khomrutai, Ph.D.

(2)

More examples

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 2 / 21

EX. Find the Laplace transform for each of the following functions f (t).

1. f (t) = 4

2. f ( t ) = 3 e − 2 t

3. f ( t ) = t 4 + t 2 + 1

4. f (t) = 3 sin t − 5 cos(2t)

5. f ′′ (t) = e 2 t , f (0) = f ′ (0) = 0

(3)

More examples

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 3 / 21

EX. Find the inverse Laplace transform for each of the following functions F (s).

1. F (s) = 1 s − 5 2. F (s) = 2

3 s + 6 3. F ( s ) = s − 3 4. F (s) = 1

s 2 + 9 5. F ( s ) = s + 5

s 2 + 1 6. F (s) = 2

s 2 + 4s + 3

(4)

Laplace Transform of Integrals

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 4 / 21

Theorem. Let F ( s ) = L [ f ( t )]. Then

L

Z t

0

f ( τ ) dτ

= F (s)

s = L[f (t)]

s Also,

L − 1

F ( s ) s

=

Z t

0

f (τ ) dτ =

Z t

0

L − 1 [F ](τ ) dτ

(5)

Laplace Transform of Integrals

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 5 / 21

Proof. Let g ( t ) = R t

0 f ( τ ) dτ . Then g (0) = 0 and g ′ ( t ) = f ( t ).

Then

L[g ′ (t)] = sG(s) − g(0) = sG(s).

On the other hand, L [ g ′ ( t )] = L [ f ( t )] = F ( s ), hence

G ( s ) = F (s)

s .

(6)

Example 4

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 6 / 21

EX. Find the Laplace transforms

L

Z t

0

e 2 τ dτ

, L

Z t

0

( τ 2 + 3 sin τ ) dτ

.

(7)

Example 5

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 7 / 21

EX. Find the inverse Laplace transforms

L − 1

1

s(s 2 + 1)

, L − 1

1

s(s − 3)

.

(8)

Shifting in s

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 8 / 21

Theorem. Let F ( s ) = L [ f ( t )]. Then L

e at f (t)

= F (s − a) = L [f ](s − a), thus

L − 1 [F (s − a)] = e at f (t) = e at L − 1 [F (s)].

(9)

Shifting in s

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 9 / 21

Proof. By definition,

L [e at f (t)] =

Z ∞

0

e −st e at f (t) dt

=

Z ∞

0

e − ( s−a ) t f (t) dt

=

Z ∞

0

e −st f ( t ) dt

s→s−a

= F ( s − a )

(10)

Example 6

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 10 / 21

EX. Find the Laplace transforms L

e 3 t sin t

, L [e − 2 t cos 5t], L [t 4 e t ].

(11)

Example 7

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 11 / 21

EX. Find the inverse Laplace transforms

L − 1

1 (s − 3) 2

, L − 1

s + 1

(s + 1) 2 + 4

, L − 1

1

s 2 + 4s + 5

.

(12)

Example 8

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 12 / 21

EX. Solve the IVP

y ′′ + 2y ′ + 5y = 0, y(0) = 0, y ′ (0) = 3.

ANS. y(t) = 3 2 e −t sin 2t.

(13)

Heaviside Functions

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 13 / 21

Definition. The Heaviside function (or unit step function ) is

H ( t ) =

( 0, t < 0 1, t ≥ 0

For a number a ≥ 0, we have

H ( t − a ) =

( 0 t < a

1 t ≥ a

(14)

Heaviside Functions

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 14 / 21

(15)

The Laplace Transform of H ( t − a )

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 15 / 21

Theorem. For a number a ≥ 0, we have

L [H (t − a)] = e −as s . In particular,

L [ H ( t )] = 1 s .

Proof. By the definition of H (t − a),

L [ H ( t − a )] =

Z ∞

0

e −st H ( t − a ) dt =

Z ∞

a

e −st dt = e −as

s .

(16)

Example 9

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 16 / 21

EX. Find the Laplace transform of the following functions:

f (t) =

( 0 if 0 < t < 3

5 if t ≥ 3 , g(t) = 3H (t) − H (t − π).

(17)

Example 9

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 17 / 21

EX. Find the inverse Laplace transforms

L − 1

e − 2 s s

, L − 1

2e −s − e − 2 s s

(18)

Pulses

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 18 / 21

Def. A pulse is a function defined by

k [ H ( t − a ) − H ( t − b )] =

 

 

0 if t < a

k if a ≤ t < b, 0 if t ≥ b,

where k 6= 0 and 0 ≤ a < b are constants.

(19)

Laplace Transform of Pulses

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 19 / 21

Theorem.

L [ k ( H ( t − a ) − H ( t − b ))] = k e −as − e −bs

s .

(20)

Example 10

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 20 / 21

EX. Find the Laplace transform of the functions

f ( t ) =

 

 

0 0 < t < 4 2 4 ≤ t < 6 0 t ≥ 6

, g ( t ) = 10( H ( t − 2) − H ( t − 5)) .

(21)

Example 11

EX 1.

EX 2.

Prop 3: Integration EX 4.

EX 5.

Prop 4: s-shifting EX 6.

EX 7.

EX 8.

Heaviside EX 9.

Def: Pulse Pulse EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 21 / 21

EX. Find the inverse Laplace transform of the function

F (s) = 4 e − 3 s − e − 4 s

s .

Referensi

Dokumen terkait

In this chapter we review the basic concepts of functions, polynomial func- tions, rational functions, trigonometric functions, logarithmic functions, ex- ponential

We give a closed-form evaluation of a number of Erdelyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3 F 2

We have in all three cases given rational functions with a zero at∞, so the inverse Laplace transform exists and is given by a residuum formula.. Alternativelyone may use a

Lecture1| 13 Question For each of the following functions, discuss the given limit from graphs... Lecture1| 16 Question From the graph of given below find the following

Chapter 7 A transform of mean-square fractional integrals and derivatives In deterministic fractional calculus the Laplace transform can be used to solve some fractional integral and

We see that L[f1t] =L[f2t], but f1 6= f2, this means that the Laplace transform is not a one-to-one function on the space of piecewise continuous functions, but the Laplace transform

7.Laplace transform of functions obtained with multiplication by tn Definition 7.1 Leibniz's rule states that integration and differentiation are interchangeable i.e... Laplace

The Laplace Transform 148 Poles, Zeroes, and the Region of convergence 149 Properties of the Laplace transform 150 The Discrete Fourier Transform and Fast Fourier Transform 153 The