Method of Applied Math
Lecture 4: Bessel Equation
Sujin Khomrutai, Ph.D.
Bessel Equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Let ν be a non-negative constant. The equation of the form x2y′′ + xy′ + (x2 − ν2)y = 0
is called the Bessel equation of order ν.
Note that a = 0 is a regular singular point. Expressing in the standard form
y′′ + 1
xy′ + x2 − ν2
x2 y = 0 ⇒ p(x) = 1
x, q(x) = x2 − ν2 x2 we have
p0 = lim xp(x) = 1, q0 = lim x2q(x) = −ν2.
Bessel Equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
The indicial equation is
r(r − 1) + r − ν2 = 0 or
r2 − ν2 = 0 ⇒ r1 = ν, r2 = −ν.
The larger root is r1 = ν.
So by Frobenius’ theorem, the Bessel equation has a series solution y = xν(b0 + b1x + b2x2 + · · · )
= b0xν + b1xν+1 + b2xν+2 + · · · .
Example 1
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Find a Frobenius series solution for the Bessel equation of order 1:
x2y′′ + xy′ + (x2 − 1)y = 0,
by calculating the first four coefficients.
Sol. y = b0x + b1x2 + b2x3 + b3x4 + b4x5 + · · ·
xy′ = b0x + 2b1x2 + 3b2x3 + 4b3x4 + 5b4x5 + · · · x2y′′ = 2b1x2 + 6b2x3 + 12b3x4 + 20b4x5 + · · · x1 : b0 − b0 = 0
x2 : 2b1 + 2b1 − b1 = 0 ⇒ b1 = 0
Example 1
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
x3 : 6b2 + 3b2 + b0 − b2 = 0 ⇒ b2 = −1 8b0
x4 : 12b3 + 4b3 + b1 − b3 = 0 ⇒ b3 = 0 x5 : 20b4 + 5b4 + b2 − b4 = 0 ⇒ b4 = − 1
24b2 = 1 192b0
So we get y = b0
x − 1
8x3 + 1
192x5 + · · ·
. Taking b0 = 12, we can write the solution as
y =
∞
X
k=0
(−1)k
k!Γ(ν + k + 1)
x 2
2k+ν
(ν = 1).
Solving Bessel equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Generally, we have the following solution for the Bessel equation of order ν.
Theorem. The function Jν(x) =
∞
X
k=0
(−1)k
k!Γ(ν + k + 1)
x 2
2k+ν , is a solution of the Bessel equation of order ν.
This solution is obtained by taking the larger root of the indicial equation.
Solving Bessel equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Frobenius’ method. Choose a = 0 and use the larger root r = ν of the indicial equation.
Step 1 Set
y =
∞
X
k=0
bkxk+ν
y′ =
∞
X
k=0
bk(k + ν)xk+ν−1
y′′ =
∞
X
k=0
bk(k + ν)(k + ν − 1)xk+ν−2.
Solving Bessel equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Step 2. Recurrence equations:
k = 0 : ν(ν − 1)b0 + νb0 − ν2b0 = 0
k = 1 : (ν + 1)νb1 + (ν + 1)b1 − ν2b1 = 0
k ≥ 2 : (k + ν)(k + ν − 1)bk + (k + ν)bk + bk−2 − ν2bk = 0 Step 3 Solve the recurrence equations to get
b1 = b3 = b5 = · · · = 0 and
b2n = (−1)nb0
22nn!(ν + 1)(ν + 2) · · · (ν + n), n = 1, 2, . . .
Solving Bessel equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Step 4 Let
b0 = 1
2νΓ(ν + 1) ⇒ b2n = (−1)n
22n+νn!Γ(ν + n + 1) The solution is
Jν(x) =
∞
X
n=0
(−1)n
n!Γ(ν + n + 1)
x 2
2n+ν
Bessel Functions of the First Kind
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Definition. The function Jν(x) =
∞
X
k=0
(−1)k
k!Γ(ν + k + 1)
x 2
2k+ν
is called the Bessel function of the first kind of order ν. Recall. Γ is the Gamma function. It has the properties that
Γ(n + 1) = n! n ∈ {0,1, 2, . . .}, and
Γ(x + n + 1) = (x + n)(x + n − 1) · · · xΓ(x).
Example 2
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Use the solution formula to find a solution of the equation xy′′ + y′ + xy = 0 (x > 0).
Sol.
Example 3
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Show that the following property hold:
(xνJν(x))′ = xνJν−1(x).
Sol.
Bessel Functions of the Second Kind
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
The indicial equation of the Bessel equation of order ν has two roots r1 = ν, r2 = −ν.
The larger root r1 = ν leads to a solution y1 = Jν(x). For the root r2 = −ν, one get another solution
J−ν(x) =
∞
X
n=0
(−1)k
k!Γ(−ν + k + 1)
x 2
2k−ν
.
A difficulty: {Jν, J−ν} are linearly dependent for ν = 0,1, 2, . . . In fact, J−ν(x) = (−1)νJν(x).
If ν 6∈ {0, 1,2, . . .} then the Bessel equation has a general solution y = C1Jν(x) + C2J−ν(x).
Example 4
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Show that J−1(x) = −J1(x). Sol.
Example 5
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Find the general solution of the Bessel equation x2y′′ + xy′ +
x2 − 4 9
y = 0. Sol.
Bessel Functions of the Second Kind
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Definition. We define Yν(x) = 1
sin νπ [Jν(x) cosνπ − J−ν(x)] , ν 6∈ {0,1, 2, . . .}
and
Yν(x) = lim
µ→ν Yµ(x), ν ∈ {0,1, 2, . . .}.
Yν is another solution to the Bessel equation of order ν and {Jν, Yν} are fundamental solutions.
Yν(x) is called Bessel function of the second kind order ν.
Complete Solution of Bessel Equation
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
Theorem. The complete solution of the Bessel equation x2y′′ + xy′ + (x2 − ν2)y = 0
is
y = C1Jν(x) + C2Yν(x) where C1, C2 are constants.
Example 6
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Find the complete solution of the Bessel equation x2y′′ + xy′ + x2 − 5
y = 0.
Sol.
Example 7
Bessel eqn EX 1
Use Frobenius Bessel 1st kind EX 2.
EX 3.
Bessel 2nd kind EX 4.
EX 5.
Complete solution EX 6.
EX 7.
EX. Find the complete solution of the equation y′′ +
e−2x − 1 9
y = 0
by changing the variable z = e−x. EX.