• Tidak ada hasil yang ditemukan

Method of Applied Math

N/A
N/A
Protected

Academic year: 2024

Membagikan "Method of Applied Math"

Copied!
18
0
0

Teks penuh

(1)

Method of Applied Math

Lecture 2: Legendre’s Equation and Legendre Polynomials

Sujin Khomrutai, Ph.D.

(2)

The Gamma function

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Definition The Gamma function, denoted Γ(x), is the function defined by

Γ(x) =

Z

0

e−ttx−1 dt for all real number x > 0.

For x < 0 such that x 6∈ {−1, −2, . . .}, it is defined by

Γ(x) = Γ(x + k)

(x + k − 1)(x + k − 2) · · · (x + 1)x

where k is a natural number taken so that x + k > 0.

(3)

The Gamma function

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

The graph of Gamma function is as shown below

(4)

Properties of Gamma function

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

• It is a basic exercise in calculus that Γ(x + 1) = xΓ(x)

for all x ∈ R \ {−1, −2, . . . ,}.

• If k is a natural number, then

Γ(x + k) = (x + k − 1) · · ·(x + 1)xΓ(x) for all x ∈ R \ {−1, −2, . . . ,}.

• In particular, if n is zero or a natural number, then Γ(n + 1) = n!.

(5)

Example 1

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

EX. Find the value of Γ(5) + Γ(0).

(6)

Example 2

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

EX. Show that Γ

1 2

= √ π.

(7)

Legendre’s equation

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Definition The Legendre equation is the equation of the form (1 − x2)y′′ − 2xy + k(k + 1)y = 0

where k is a constant.

The most important special case is when k is a natural number.

Alternative form:

(1 − x2)y

+ k(k + 1)y = 0

(8)

Example 3: Legendre’s equation in Electrostatics

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Example. A two metallic spherical caps are placed so that the upper part stayed at a constant potential 110 V and the lower part is grounded. Finding the electrostatic potential at any point in the space is reduced to solve the Legendre’s equation.

(9)

Series solutions of Legendre’s equation

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Power series method. a = 0 is an ordinary point for the Legendre’s equation.

So we set solution y to the Legendre’s equation as y =

X

n=0

bnxn

y =

X

n=0

bnnxn−1 =

X

n=1

bnnxn−1

y′′ =

X

n=0

bnn(n − 1)xn−2 =

X

n=2

bnn(n − 1)xn−2.

(10)

Series solutions of Legendre’s equation

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Substituting y, y, y′′ in the Legendre’s equation by with the above power series expansions, we get

X

n=0

(n + 1)(n + 2)bn+2 + (k − n)(k + n + 1)bn

xn = 0

Then we have the recurrence equation:

bn+2 = −(k − n)(k + n + 1)

(n + 1)(n + 2) bn (∗)

holds for n = 0, 1,2, . . .

(11)

Series solutions of Legendre’s equation

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Solve the recurrence equation (∗): For n = 0, 1, 2,3, we get b2 = −k(k + 1)

2! b0, b4 = −(k − 2)(k + 3)

3 · 4 b2 = (k − 2)k(k + 1)(k + 3)

4! b0

and

b3 = −(k − 1)(k + 2) 3! b1

b5 = −(k − 3)(k + 4)

4 · 5 b3 = (k − 3)(k − 1)(k + 2)(k + 4)

5! b1

(12)

Series solutions of Legendre’s equation

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Legendre functions. Setting b0 = 1, b1 = 0, we get b1 = b3 = · · · = bodd = 0. Using b2, b4, . . . we obtain

y1 = 1 − k(k + 1)

2! x2 + (k − 2)k(k + 1)(k + 3)

4! x4 + · · · Setting b0 = 0, b1 = 1, we get b0 = b2 = · · · = beven = 0. Using b1, b3, . . . we obtain

y2 = x−(k − 1)(k + 2)

3! x3+(k − 3)(k − 1)(k + 2)(k + 4)

5! x5+· · · y1, y2 are called the Legendre functions.

(13)

Legendre polynomials

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Theorem. Let k ∈ {0, 1, 2, . . .}. The solutions of the Legendre’s equation

(1 − x2)y′′ − 2xy + k(k + 1)y = 0 are as follows.

• If k = 2m is an even integer, then y1 is a polynomial of degree 2m and y2 is a power series with infinitely many terms.

• If k = 2m + 1 is an odd integer, then y2 is a polynomial of degree 2m + 1 and y1 is a power series with infinitely many terms.

(14)

Example 4

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

EX.

Even integer. For k = 0, we get y1 = 1 and y2 = x + 23x3 + 15x5 + · · ·

For k = 2, we get y1 = 1 − 3x2, y2 = x − 3!4 x3245! x5 + · · · For k = 4, we get y1 = 1 − 10x2 + 353 x4

Odd integer. For k = 1, we get y2 = x, y1 = 1−x24!8 x4 − · · · For k = 3, we get y2 = x − 53x3, y1 = 1 − 122! x2 + 724! x4 + · · ·

For k = 5, we get y2 = x − 143 x3 + 215 x5

(15)

Legendre polynomials

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

If k ∈ {0,1, 2, . . .}, we let Pk(x) =

(y1(x)/y1(1) k = 2m

y2(x)/y2(1) k = 2m + 1

Definition. Let k ∈ {0,1, 2, 3, . . .}. We call Pk(x) the Legen- dre polynomial of degree k.

Then other solution of the Legendre’s equation which is a power series with infinitely many term is denoted Qk(x) .

Thus the complete solution of the Legendre’s equation is

(16)

Rodrigues’ formula

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

Rodrigues’ formula If k ∈ {0, 1,2, . . .} then Pk(x) = 1

2kk!

dk

dxk (x2 − 1)k

(17)

Example 5

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

EX. Solve the Legendre’s equation (1 − x2)y′′ − 2xy + 6y = 0.

(18)

Example 6

Gamma function Properties

EX 1.

EX 2.

Legendre’s eqn EX 3.

Lengendre func Legendre poly EX 4.

Rodrigues’ form EX 5.

EX 6.

EX. Find the Legendre polynomial P4(x).

Referensi

Dokumen terkait

This research aims to describe method used by teacher in teaching reading applied in SMP N 1 Sidoharjo at the eighth year in 2012/2013 academic year, problem faced by

In addition, the Jin–Xin relaxation method holds the analytical properties of the Burgers equation better than the standard Lax–Friedrichs finite-volume method

The coecients of this equation are given in terms of the polynomials and which appear in the q-Pearson dierence equation D q ( ) = dening the weight of the q-classical

Although it is not an orthogonal family, the falling factorial sequence of polynomials satises a rst order dierence equation and also a two term recurrence relation..

Krall and Sheer rst nd necessary and sucient conditions in order for orthogonal polynomials to satisfy the dierential equation (1.1) and then classify such dierential equations, up to

This article discusses an iterative method to solve a nonlinear equation, which is free from derivatives by approximating a derivative in the two-step of the method of Xiaojian

PERFORMANCE ANALYSIS OF FOUR-POINT EGAOR ITERATIVE METHOD APPLIED TO POISSON IMAGE BLENDING PROBLEM Jeng Hong Eng1*, Azali Saudi2 and Jumat Sulaiman3 1,3Faculty of Science and

ContentslistsavailableatScienceDirect Applied Mathematics and Computation journalhomepage:www.elsevier.com/locate/amc A modification to the first integral method and its applications