• Tidak ada hasil yang ditemukan

Method of Applied Math

N/A
N/A
Protected

Academic year: 2024

Membagikan "Method of Applied Math"

Copied!
23
0
0

Teks penuh

(1)

Lecture 1 Sujin Khomrutai – 1 / 23

Method of Applied Math

Lecture 5: Laplace Transform

Sujin Khomrutai, Ph.D.

(2)

Introduction

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 2 / 23

• The Laplace Transform is a very efficient technique for solving Initial Value Problems (IVPs).

• This is a transformation technique:

IVP

Algebraic equations

Solving algebraic equations

Solutions to the IVPs

(3)

Initial Value Problems

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 3 / 23

Definition An Initial Value Problem (IVP) is a differential equation that is given with some conditions involving the function and some of its derivatives at a certain initial time.

• The prescribed values are called initial conditions.

• In practices, these values can be observed or measured by ex- periment.

(4)

Example 1

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 4 / 23

EX. The switch is on at time t = 2 (from B to A), where the

capacitor contained no charges before that time. After 1 min, the switch is turning back. Find the voltage drop Eout at any time t.

(5)

Example 2

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 5 / 23

EX. The spring-mass system is start from equilibrium at t = 0.

Then the mass start to move at the initial velocity of 2 (m/s) to the right and is exerted by an external force f(t) = 2 sin 5t. Find the movement y1 of the mass where we are given the data that k1 = k2 = 2, M = 5, m = 1, and c1 = 0.

(6)

Initial Value Problems

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 6 / 23

ODE of order n

any(n) + an−1y(n−1) + · · · + a1y + a0y = f(t) standard initial conditions are

y(t0) = A0, y(t0) = A1, . . . , y(n−1)(t0) = An−1. Usually t0 = 0.

(7)

Initial Value Problems

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 7 / 23

EX. The ODE

y′′ − 3y + 2y = et with the initial conditions

y(0) = −2, y(0) = 1 is an initial value problem.

(8)

Initial Value Problems

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 8 / 23

EX. The ODE

y′′′ − 3y′′ + y + 5y = tsin t with the initial conditions

y(1) = 0, y(1) = 10, y′′(1) = 3 is an initial value problem.

(9)

Laplace Transform

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 9 / 23

Definition. Given a function f(t) whose domain contains [0, ∞), we define a funciton F(s) by

F(s) =

Z

0

e−stf(t) dt

The domain of F is any s such that the above integral converges.

F(s) is called the Lapalce transform of f(t) and is denoted by F(s) = L[f(t)]

(10)

Example 3

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 10 / 23

EX. Find the Laplace transform of

f(t) = eat, g(t) = sin(at)

where a is a real number. Also, if a > −1 find the Laplace transform of

h(t) = ta.

(11)

Inverse Laplace Transform

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 11 / 23

Definition. Given a function F(s), a function f(t) such that L[f(t)] = F(s) is called Inverse Laplace transform of F(s) and is denoted by

f(t) = L1[F(s)].

The inverse Laplace transform function f(t) is unique provided it is continuous. It can be easily found from the formulas of Laplace transform.

(12)

Example 4

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 12 / 23

EX. Find the inverse Laplace transform of F(t) = 1

s − a, G(t) = a

s2 + a2.

(13)

Table

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 13 / 23

f(t) F(s)

1 1

s (s > 0) tn (n = 1,2, . . .) n!

sn+1 (s > 0) ta (a > −1) Γ(a + 1)

sa+1 (s > 0)

eat 1

s − a (s > a)

sin(at) a

s2 + a2 (s > 0)

cos(at) s

s2 + a2 (s > 0)

(14)

Linearity Property

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 14 / 23

Theorem. Let L[f(t)] = F(s), L[g(t)] = G(s) and a, b are constants. Then

L[af(t) + bg(t)] = aF(s) + bG(s) L1[aF(s) + bG(s)] = af(t) + bg(t) that is

L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]

L1[aF(s) + bG(s)] = aL1[F(s)] + bL1[G(s)]

(15)

Linearity Property

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 15 / 23

In general,

L[af(t) + bg(t) + · · · ] = aL[f(t)] + bL[g(t)] + · · ·

L1[aF(s) + bG(s) + · · · ] = aL1[F(s)] + bL1[G(s)] + · · · Proof. By the linearity property for integral, we have

L[af(t) + bg(t)] =

Z

0

e−st (af(t) + bg(t)) dt

= a

Z

0

e−stf(t)dt + b

Z

0

e−stg(t) dt

= aL[f(t)] + bL[g(t)]

(16)

Example 5

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 16 / 23

EX. Find the Laplace transform of f(t) = cos 2t + 4t + 7e2t.

(17)

Example 6

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 17 / 23

EX. Find the inverse Laplace transform of F(s) = 1

(s + 1)(s − 2).

(18)

Derivation Property

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 18 / 23

Theorem. Let L[f(t)] = F(s). Then L[f(t)] = sF(s) − f(0)

and

L[f′′(t)] = s2F(s) − sf(0) − f(0).

Generally,

L[f(n)(t)] = snF(s) − sn−1f(0) − · · · − sf(n−2)(0)

− f(n−1)(0)

(19)

Derivation Property

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 19 / 23

Proof. By the definition and the integration by parts, we have L[f(t)] =

Z

0

e−stf(t) dt

= e−stf(t)

0

Z

0

(−se−st)f(t) dt

= −f(0) + sF(s)

The remaining identity can be proved in the same way.

(20)

Example 7

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 20 / 23

EX. Let y(0) = −2, y(0) = 1. Find the Laplace transform of y(t), y′′(t),

in terms of Y (s) = L[y(t)].

(21)

Example 8

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 21 / 23

EX. Assume that y(t) is the solution of the IVP

y′′ + 3y − 2y = sin(3t), y(0) = −1, y(0) = 0. Calculate the Laplace transform Y (s) = L[y(t)].

(22)

Example 9

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 22 / 23

EX. Solve the IVP

y + 2y = e−t, y(0) = 0

(23)

Example 10

Introduction IVP

EX 1.

EX 2.

IVP

Laplace Transform EX 3.

EX 4.

Table

Prop 1: Linearity EX 5.

EX 6.

Prop 2: Derivative EX 7.

EX 8.

EX 9.

EX 10.

Lecture 1 Sujin Khomrutai – 23 / 23

EX. Solve the IVP

y′′ + y = 3t, y(0) = 1, y(0) = 2.

Referensi

Dokumen terkait

Define what is meant by the term “a vector valued – function”.. Find the parametric equation for the curve determined by the cone And

Very recently some basic theory for the initial value problems of fractional differ- ential equations involving Riemann-Liouville differential operator has been discussed..

Applications are given to some initial and boundary value problems of ordinary differential inclusions for proving the existence of extremal solutions.. Our results generalize

According to the basic idea of the method mentioned the given boundary-value problem (BVP) is replaced by a problem for a ”perturbed” differential equation con- taining some

Roughly speaking, the problem consists in finding out the criterion that for an a priori given differential equation there locally exists a Lagrange function, from which this

Definitions: Domain, Codomain, Image, Preimage and Range Definition Iff is a function fromAto B, we say that Ais the domain off andB is the codomainof f.. Iffa =b, we say that b is

Thus, given ordinary differential equations and systems of differential equations are called Cauchy tasks, that is, if additional conditions are given for a single value of an

Linear Differential Equations: type-I The standard form of a linear differential equation of first order and first degree is where P and Q are the functions of x, or constants...