• Tidak ada hasil yang ditemukan

Method of Applied Math

N/A
N/A
Protected

Academic year: 2024

Membagikan "Method of Applied Math"

Copied!
28
0
0

Teks penuh

(1)

Method of Applied Math

Lecture 2: Legendre’s Equation and Gamma function

Sujin Khomrutai, Ph.D.

(2)

Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Plan

✔ Legendre’s equation.

✔ Gamma function

✔ Applications

(3)

Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Definition For a number n , the equation of the form (1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0

is called the Legendre equation of order n.

• n = 0: (1 − x 2 ) y ′′ − 2 xy ′ = 0

• n = 1: (1 − x 2 ) y ′′ − 2 xy ′ + 2 y = 0

• n = 2: (1 − x 2 )y ′′ − 2xy ′ + 6y = 0

• n = 3: (1 − x 2 )y ′′ − 2xy ′ + 12y = 0

In most phenomena, n is a non-negative integer. So we restrict to

that n ∈ { 0, 1, 2, . . . , } .

(4)

Example 1: (Electrostatics)

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Example. A two metallic spherical caps are placed so that the

upper part stayed at a constant potential 110 V and the lower

part is grounded. The electrostatic potential at any point in the

space can be calculated by solving the Legendre’s equation.

(5)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Power series method. a = 0 is an ordinary point. Set solution y to the Legendre’s equation

(1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0, as

y =

X

k=0

b k x k

y ′ =

X

k =0

b k +1 (k + 1)x k

y ′′ =

X

k=0

b k+2 (k + 2)(k + 1)x k .

(6)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

The first term

(1 − x 2 )y ′′ = y ′′ − x 2 y ′′

=

X

k =0

b k +2 ( k + 2)( k + 1) x k −

X

k =0

b k +2 ( k + 2)( k + 1) x k +2

=

X

k=0

b k+2 (k + 2)(k + 1)x k −

X

j =2

b j j (j − 1)x j

= b 2 · 2 · 1 + b 3 · 3 · 2x +

X

k =2

[b k +2 (k + 2)(k + 1) − b k k (k − 1)] x k

where we have use shifting and splitting.

(7)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

The second term 2xy ′ = 2x

X

k=0

b k +1 (k + 1)x k

=

X

k =0

2b k+1 (k + 1)x k +1

=

X

k =1

2b k kx k Third term

n ( n + 1) y = n ( n + 1)

X

k =0

b k x k =

X

k =0

n ( n + 1) b k x k

(8)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Thus

b 2 · 2 · 1 + b 3 · 3 · 2x +

X

k =2

[ b k +2 ( k + 2)( k + 1) − b k k ( k − 1)] x k

X

k=1

2b k kx k +

X

k=0

n(n + 1)b k x k = 0

∴ [2b 2 + n(n + 1)b 0 ] + [6b 3 − 2b 1 + n(n + 1)b 1 ]x +

X

k=2

[b k+2 (k + 2)(k + 1) − b k k (k − 1)

− 2b k k + n(n + 1)b k ]x k = 0

(9)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Finally, we get

[2b 2 + n(n + 1)b 0 ] + [6b 3 + (n − 1)(n + 2)b 1 ]x +

X

k =2

[( k + 2)( k + 1) b k +2 − ( n − k )( n + k + 1) b k ] x k

Apply the fact: P ∞

k=0 c k (x − a) k = 0 ⇔ c k = 0 for all k : b 2 = − n(n + 1)

2 b 0

b 3 = − ( n − 1)( n + 2)

6 b 1

b k+2 = − ( n − k )( n + k + 1)

(k + 2)(k + 1) b k ∀ k = 2 , 3 , . . . .

(10)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Let us consider the case n = 3. Recurrence equations are b 2 = − 3 · 4

2 b 0 , b 3 = − 2 · 5 3! b 1 b k +2 = − (3 − k)(3 + k + 1)

(k + 2)(k + 1) b k ∀ k ≥ 2 k = 2 : b 4 = − 1 · 6

4 · 3 b 2 = 1 · 6 · 3 · 4 4! b 0 k = 3 : b 5 = − 0 · 7

5 · 4 b 3 = 0 k = 4 : b 6 = − ( − 1) · 8

6 · 5 b 4 = − ( − 1) · 8 · 1 · 6 · 3 · 4

6! b 0

k = 5 : b 7 = − ( − 2) · 9

7 · 6 b 5 = 0

(11)

Series solutions of Legendre’s equation

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

So in the case n = 3, we obtain the solution y = b 0

1 − 3 · 4

2! x 2 + 1 · 6 · 3 · 4

4! x 4 + · · ·

+ b 1

x − 2 · 5 3! x 3

This is the general solution with fundamental solutions y 1 = 1 − 3 · 4

2! x 2 + 1 · 6 · 3 · 4

4! x 4 + · · · an infinite series y 2 = x − 2 · 5

3! x 3 = − 5

3 x 3 + x a polynomial degree 3

For a general n ∈ { 0, 1, 2, . . . } , the Legendre equation has one

polynomial solution of degree n and an infinite series solution.

(12)

Legendre functions

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Theorem. For n ∈ { 0 , 1 , 2 , . . . } , the general solutions to the Legendre’s equation

(1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0 is

y = C 1 P n ( x ) + C 2 Q n ( x )

where P n is a polynomial of degree n, Q n an infinite series.

• P n = the Legendre polynomial.

• Q n = the Legendre function of the second kind.

(13)

Legendre functions

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

(14)

Legendre functions

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

(15)

Rodrigues’ formula

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

The Legendre’s equation with n = 0 is (1 − x 2 )y ′′ − 2xy ′ = 0.

A polynomial of degree n = 0 is constant. It can be easily check that y = 1 is a solution. So we put

P 0 ( x ) = 1 .

Rodrigues’ formula If n ∈ { 1, 2, 3, . . . } then P n ( x ) = 1

2 n n!

d n

dx n ( x 2 − 1) n

(16)

Example 2

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Verify Rodigues’ solution formula for n = 1 , 2 , 3.

n = 1 : P 1 ( x ) = 1 2

d

dx ( x 2 − 1) = x (1 − x 2 )x ′′ − 2x · x ′ + 2x = 0

(1 − x 2 ) · 0 − 2x · 1 + 2x = 0 True n = 2 : P 2 (x) = 1

2 2 · 2!

d 2

dx 2 (x 2 − 1) 2

= 1 8

d 2

dx 2 ( x 4 − 2 x 2 + 1) = 3

2 x 2 − 1 2 (1 − x 2 )( 3

2 x 2 − 1

2 ) ′′ − 2 x ( 3

2 x 2 − 1

2 ) ′ + 6( 3

2 x 2 − 1

2 ) = 0 (1 − x 2 ) · 3 − 2 x · 3 x + (9 x 2 − 3) = 0

(3 − 3x 2 ) − 6x 2 + (9x 2 − 3) = 0 True

(17)

Example 2

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

n = 3 : P 3 (x) = 1 2 3 · 3!

d 3

dx 3 (x 2 − 1) 3

= 1 48

d 3

dx 3 ( x 6 − 3 x 4 + 3 x 2 − 1)

= 5

2 x 3 − 3 2 x (1 − x 2 )( 5

2 x 3 − 3

2 x) ′′ − 2x( 5

2 x 3 − 3

2 x) ′ + 12( 5

2 x 3 − 3

2 x) = 0 (1 − x 2 )(15x) − 2x( 15

2 x 2 − 3

2 ) + (30x 3 − 18x) = 0

(15x − 15x 3 ) − (15x 3 − 3x) + (30x 3 − 18x) = 0 True

(18)

Example 3

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Solve the Legendre’s equation (1 − x 2 )y ′′ − 2xy ′ + 2y = 0.

Sol. We get a solution P 1 (x) = x. Use the reduction of order Q 1 ( x ) = P 1 ( x )

Z 1

(P 1 (x)) 2 e −

R

−2x 1−x2

dx

dx

= x

Z 1

x 2 e − ln(1 − x

2

) dx

= x

Z 1

x 2 (1 − x 2 ) dx = x 2 ln

1 + x 1 − x

− 1

∴ y = C 1 x + C 2 x

2 ln

1 + x 1 − x

− 1

(19)

The Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

The factorials n ! are 0! = 1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6, ...

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1 Observe that

Z ∞

0

e − t dt =

Z ∞

0

e − t tdt = 1,

Z ∞

0

e − t t 2 dt = 2 = 2!, Z ∞

e − t t 3 dt = 6 = 3!.

(20)

The Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Definition For x > 0, the integral Z ∞

0

e − t t x − 1 dt is called the Gamma function denoted Γ(x).

If x < 0 and x 6∈ {− 1, − 2, . . . } we put

Γ(x) = Γ(x + n)

(x + n − 1)(x + n − 2) · · · (x + 1)x where n ∈ { 1 , 2 , . . . } satisfies x + n > 0.

Consecutive product formula

Γ(x + n) = (x + n − 1)(x + n − 2) · · · (x + 1)xΓ(x).

(21)

The Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

The graph of Gamma function is as shown below

(22)

Properties of Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

(1) Γ(1) = 1. For x > 0, Γ(x + 1) = xΓ(x)

(2) Generally, for n ∈ { 1, 2, . . . } we get

Γ(x + n) = (x + n − 1) · · · (x + 1)xΓ(x).

(3) In particular, if n ∈ { 0 , 1 , 2 , . . . } then

Γ( n + 1) = n ! .

(23)

Properties of Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

Proof. (1) For Γ(1), consider Γ(1) =

Z ∞

0

e − t t 1 − 1 dt =

Z ∞

0

e − t dt

= ( − e − t )

t=0 = 0 − ( − e 0 ) = 1 . Next, for x > 0 consider

Γ(x + 1) =

Z ∞

0

e − t t (x+1) − 1 dt =

Z ∞

0

e − t t x dt

= ( − e − t t x )

t =0 −

Z ∞

0

( − e − t xt x − 1 )dt (by parts)

= x

Z ∞

0

e − t t x − 1 dt = xΓ(x).

(24)

Properties of Gamma function

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

(2) For n = 2, we use (1) ( x → x + 1):

Γ( x + 2) = Γ(( x + 1) + 1) = ( x + 1)Γ( x + 1) , and then use (1) one more time:

Γ(x + 1) = xΓ(x).

Thus

Γ( x + 2) = ( x + 1) x Γ( x )

The argument can be extended to n = 3, n = 4 , . . . .

(3) Use x = 1 in (2) and that Γ(1) = 1.

(25)

Example 4

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Evaluate

Γ(1) + Γ(4) , Γ(2.8)

Γ(0.8) .

(26)

Example 5

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Given that Γ(0.5) = √

π. Evaluate

Γ( − 2 . 5) .

(27)

Example 6

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Express

1

( ν + 1)( ν + 2)( ν + 3)

as a ratio of the Gamma function.

(28)

Example 7

Legendre’s eqn Legendre’s eqn EX 1.

Series Sol Legendre func Rodrigues’ form EX 2.

EX 3.

Gamma function Properties

EX 4.

EX 5.

EX 6.

EX 7.

EX. Evaluate the integral Z ∞

0

t 1.35 e − t dt.

Express the value in terms of the Gamma function.

Referensi

Dokumen terkait

concerns only with the method applied by teacher in teaching readingb. at SMPN 1 SIDOHARJO at the eighth grade in

an inversion scheme in which the finite difference method is used for the forward modeling and the integral equation method for the inverse

This article discusses an iterative method to solve a nonlinear equation, which is free from derivatives by approximating a derivative in the two-step of the method of Xiaojian

applied the numerical method for the second order differential equation for the solution of the wave function of a harmonic oscillator quantum mechanically in classical as well as

The proposed differential pulse polarographic method was successfully applied to the determination of zinecard in pharmaceutical formulations and urine samples.. Key words: Zinecard,

PERFORMANCE ANALYSIS OF FOUR-POINT EGAOR ITERATIVE METHOD APPLIED TO POISSON IMAGE BLENDING PROBLEM Jeng Hong Eng1*, Azali Saudi2 and Jumat Sulaiman3 1,3Faculty of Science and

ContentslistsavailableatScienceDirect Applied Mathematics and Computation journalhomepage:www.elsevier.com/locate/amc A modification to the first integral method and its applications

CONCLUSION The formula for the parameter estimation equation of type II censored exponential distribution data using the LINEX loss function method based on Jeffrey priors is as