Method of Applied Math
Lecture 2: Legendre’s Equation and Gamma function
Sujin Khomrutai, Ph.D.
Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Plan
✔ Legendre’s equation.
✔ Gamma function
✔ Applications
Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Definition For a number n , the equation of the form (1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0
is called the Legendre equation of order n.
• n = 0: (1 − x 2 ) y ′′ − 2 xy ′ = 0
• n = 1: (1 − x 2 ) y ′′ − 2 xy ′ + 2 y = 0
• n = 2: (1 − x 2 )y ′′ − 2xy ′ + 6y = 0
• n = 3: (1 − x 2 )y ′′ − 2xy ′ + 12y = 0
In most phenomena, n is a non-negative integer. So we restrict to
that n ∈ { 0, 1, 2, . . . , } .
Example 1: (Electrostatics)
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Example. A two metallic spherical caps are placed so that the
upper part stayed at a constant potential 110 V and the lower
part is grounded. The electrostatic potential at any point in the
space can be calculated by solving the Legendre’s equation.
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Power series method. a = 0 is an ordinary point. Set solution y to the Legendre’s equation
(1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0, as
y =
∞
X
k=0
b k x k
y ′ =
∞
X
k =0
b k +1 (k + 1)x k
y ′′ =
∞
X
k=0
b k+2 (k + 2)(k + 1)x k .
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
The first term
(1 − x 2 )y ′′ = y ′′ − x 2 y ′′
=
∞
X
k =0
b k +2 ( k + 2)( k + 1) x k −
∞
X
k =0
b k +2 ( k + 2)( k + 1) x k +2
=
∞
X
k=0
b k+2 (k + 2)(k + 1)x k −
∞
X
j =2
b j j (j − 1)x j
= b 2 · 2 · 1 + b 3 · 3 · 2x +
∞
X
k =2
[b k +2 (k + 2)(k + 1) − b k k (k − 1)] x k
where we have use shifting and splitting.
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
The second term 2xy ′ = 2x
∞
X
k=0
b k +1 (k + 1)x k
=
∞
X
k =0
2b k+1 (k + 1)x k +1
=
∞
X
k =1
2b k kx k Third term
n ( n + 1) y = n ( n + 1)
∞
X
k =0
b k x k =
∞
X
k =0
n ( n + 1) b k x k
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Thus
b 2 · 2 · 1 + b 3 · 3 · 2x +
∞
X
k =2
[ b k +2 ( k + 2)( k + 1) − b k k ( k − 1)] x k
−
∞
X
k=1
2b k kx k +
∞
X
k=0
n(n + 1)b k x k = 0
∴ [2b 2 + n(n + 1)b 0 ] + [6b 3 − 2b 1 + n(n + 1)b 1 ]x +
∞
X
k=2
[b k+2 (k + 2)(k + 1) − b k k (k − 1)
− 2b k k + n(n + 1)b k ]x k = 0
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Finally, we get
[2b 2 + n(n + 1)b 0 ] + [6b 3 + (n − 1)(n + 2)b 1 ]x +
∞
X
k =2
[( k + 2)( k + 1) b k +2 − ( n − k )( n + k + 1) b k ] x k
Apply the fact: P ∞
k=0 c k (x − a) k = 0 ⇔ c k = 0 for all k : b 2 = − n(n + 1)
2 b 0
b 3 = − ( n − 1)( n + 2)
6 b 1
b k+2 = − ( n − k )( n + k + 1)
(k + 2)(k + 1) b k ∀ k = 2 , 3 , . . . .
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Let us consider the case n = 3. Recurrence equations are b 2 = − 3 · 4
2 b 0 , b 3 = − 2 · 5 3! b 1 b k +2 = − (3 − k)(3 + k + 1)
(k + 2)(k + 1) b k ∀ k ≥ 2 k = 2 : b 4 = − 1 · 6
4 · 3 b 2 = 1 · 6 · 3 · 4 4! b 0 k = 3 : b 5 = − 0 · 7
5 · 4 b 3 = 0 k = 4 : b 6 = − ( − 1) · 8
6 · 5 b 4 = − ( − 1) · 8 · 1 · 6 · 3 · 4
6! b 0
k = 5 : b 7 = − ( − 2) · 9
7 · 6 b 5 = 0
Series solutions of Legendre’s equation
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
So in the case n = 3, we obtain the solution y = b 0
1 − 3 · 4
2! x 2 + 1 · 6 · 3 · 4
4! x 4 + · · ·
+ b 1
x − 2 · 5 3! x 3
This is the general solution with fundamental solutions y 1 = 1 − 3 · 4
2! x 2 + 1 · 6 · 3 · 4
4! x 4 + · · · an infinite series y 2 = x − 2 · 5
3! x 3 = − 5
3 x 3 + x a polynomial degree 3
For a general n ∈ { 0, 1, 2, . . . } , the Legendre equation has one
polynomial solution of degree n and an infinite series solution.
Legendre functions
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Theorem. For n ∈ { 0 , 1 , 2 , . . . } , the general solutions to the Legendre’s equation
(1 − x 2 )y ′′ − 2xy ′ + n(n + 1)y = 0 is
y = C 1 P n ( x ) + C 2 Q n ( x )
where P n is a polynomial of degree n, Q n an infinite series.
• P n = the Legendre polynomial.
• Q n = the Legendre function of the second kind.
Legendre functions
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Legendre functions
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Rodrigues’ formula
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
The Legendre’s equation with n = 0 is (1 − x 2 )y ′′ − 2xy ′ = 0.
A polynomial of degree n = 0 is constant. It can be easily check that y = 1 is a solution. So we put
P 0 ( x ) = 1 .
Rodrigues’ formula If n ∈ { 1, 2, 3, . . . } then P n ( x ) = 1
2 n n!
d n
dx n ( x 2 − 1) n
Example 2
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Verify Rodigues’ solution formula for n = 1 , 2 , 3.
n = 1 : P 1 ( x ) = 1 2
d
dx ( x 2 − 1) = x (1 − x 2 )x ′′ − 2x · x ′ + 2x = 0
(1 − x 2 ) · 0 − 2x · 1 + 2x = 0 True n = 2 : P 2 (x) = 1
2 2 · 2!
d 2
dx 2 (x 2 − 1) 2
= 1 8
d 2
dx 2 ( x 4 − 2 x 2 + 1) = 3
2 x 2 − 1 2 (1 − x 2 )( 3
2 x 2 − 1
2 ) ′′ − 2 x ( 3
2 x 2 − 1
2 ) ′ + 6( 3
2 x 2 − 1
2 ) = 0 (1 − x 2 ) · 3 − 2 x · 3 x + (9 x 2 − 3) = 0
(3 − 3x 2 ) − 6x 2 + (9x 2 − 3) = 0 True
Example 2
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
n = 3 : P 3 (x) = 1 2 3 · 3!
d 3
dx 3 (x 2 − 1) 3
= 1 48
d 3
dx 3 ( x 6 − 3 x 4 + 3 x 2 − 1)
= 5
2 x 3 − 3 2 x (1 − x 2 )( 5
2 x 3 − 3
2 x) ′′ − 2x( 5
2 x 3 − 3
2 x) ′ + 12( 5
2 x 3 − 3
2 x) = 0 (1 − x 2 )(15x) − 2x( 15
2 x 2 − 3
2 ) + (30x 3 − 18x) = 0
(15x − 15x 3 ) − (15x 3 − 3x) + (30x 3 − 18x) = 0 True
Example 3
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Solve the Legendre’s equation (1 − x 2 )y ′′ − 2xy ′ + 2y = 0.
Sol. We get a solution P 1 (x) = x. Use the reduction of order Q 1 ( x ) = P 1 ( x )
Z 1
(P 1 (x)) 2 e −
R
−2x 1−x2dx
dx
= x
Z 1
x 2 e − ln(1 − x
2) dx
= x
Z 1
x 2 (1 − x 2 ) dx = x 2 ln
1 + x 1 − x
− 1
∴ y = C 1 x + C 2 x
2 ln
1 + x 1 − x
− 1
The Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
The factorials n ! are 0! = 1! = 1
2! = 2 · 1 = 2
3! = 3 · 2 · 1 = 6, ...
n! = n(n − 1)(n − 2) · · · 3 · 2 · 1 Observe that
Z ∞
0
e − t dt =
Z ∞
0
e − t tdt = 1,
Z ∞
0
e − t t 2 dt = 2 = 2!, Z ∞
e − t t 3 dt = 6 = 3!.
The Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Definition For x > 0, the integral Z ∞
0
e − t t x − 1 dt is called the Gamma function denoted Γ(x).
If x < 0 and x 6∈ {− 1, − 2, . . . } we put
Γ(x) = Γ(x + n)
(x + n − 1)(x + n − 2) · · · (x + 1)x where n ∈ { 1 , 2 , . . . } satisfies x + n > 0.
Consecutive product formula
Γ(x + n) = (x + n − 1)(x + n − 2) · · · (x + 1)xΓ(x).
The Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
The graph of Gamma function is as shown below
Properties of Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
(1) Γ(1) = 1. For x > 0, Γ(x + 1) = xΓ(x)
(2) Generally, for n ∈ { 1, 2, . . . } we get
Γ(x + n) = (x + n − 1) · · · (x + 1)xΓ(x).
(3) In particular, if n ∈ { 0 , 1 , 2 , . . . } then
Γ( n + 1) = n ! .
Properties of Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
Proof. (1) For Γ(1), consider Γ(1) =
Z ∞
0
e − t t 1 − 1 dt =
Z ∞
0
e − t dt
= ( − e − t )
∞
t=0 = 0 − ( − e 0 ) = 1 . Next, for x > 0 consider
Γ(x + 1) =
Z ∞
0
e − t t (x+1) − 1 dt =
Z ∞
0
e − t t x dt
= ( − e − t t x )
∞
t =0 −
Z ∞
0
( − e − t xt x − 1 )dt (by parts)
= x
Z ∞
0
e − t t x − 1 dt = xΓ(x).
Properties of Gamma function
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
(2) For n = 2, we use (1) ( x → x + 1):
Γ( x + 2) = Γ(( x + 1) + 1) = ( x + 1)Γ( x + 1) , and then use (1) one more time:
Γ(x + 1) = xΓ(x).
Thus
Γ( x + 2) = ( x + 1) x Γ( x )
The argument can be extended to n = 3, n = 4 , . . . .
(3) Use x = 1 in (2) and that Γ(1) = 1.
Example 4
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Evaluate
Γ(1) + Γ(4) , Γ(2.8)
Γ(0.8) .
Example 5
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Given that Γ(0.5) = √
π. Evaluate
Γ( − 2 . 5) .
Example 6
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Express
1
( ν + 1)( ν + 2)( ν + 3)
as a ratio of the Gamma function.
Example 7
Legendre’s eqn Legendre’s eqn EX 1.
Series Sol Legendre func Rodrigues’ form EX 2.
EX 3.
Gamma function Properties
EX 4.
EX 5.
EX 6.
EX 7.
EX. Evaluate the integral Z ∞
0
t 1.35 e − t dt.
Express the value in terms of the Gamma function.