1
Lecture Note 4 Lecture Note 4
Virtual Work & Energy Method
Second Semester, Academic Year 2012, Department of Mechanical Engineering
Chulalongkorn University
Objectives
Use the energy method to analyze structures
Describe the characteristics and properties as well as
Describe the characteristics and properties as well as determine strain energy and complementary energy and potential energy
D ib th i i l f i t l k d th i i l
Describe the principle of virtual work and use the principle to determine equilibrium, stability and analyze simple
elasticity problems with emphasis on bending problems
A simple statically indeterminate problems with emphasis on bending
2
3
Topics
Virtual Work
Strain energy complementary and potential energy
Strain energy, complementary and potential energy
Deflections
Statically indeterminate problems
3
Work By a Force
cos WF F dr
F dr cos F dr
work WF
force that done the work displacement
F
F dr
4
5
Work By a Couple
( ) ( ) ( )
2 2
M
r r
W F F Fr
W M M magnitude of couple that do the work
5
M
W M
small angle of rotation
Virtual Work
Virtual Movements Imaginary or virtual movements is assumed and does not actually exist.
Virtual displacement
Virtual rotation
Virtual rotation
Virtual deformation
Virtual movements are infinitesimally small and does not violate physical constraints.
Principle of virtual work is an alternative form of Principle of virtual work is an alternative form of
Newton’s laws that can analyze the system in equilibrium under work and energy concepts.
6
7
Virtual Work
Principle of Virtual Work Consider an object in equilibrium
Th i t l k d b ll f t th bj t ith
The virtual work done by all forces to move the object with a virtual displacement
1 r cos
F k v k
k
W F
In equilibrium, WF 0
7
Virtual Work
Principle of Virtual Work for Rigid Bodies
t e i
W W W
total virtual work done external work done Wt
W
external work done internal virtual work
e i
W W
e i
W W
8
9
Exercise
Virtual Work for Rigid Bodies #1Determine the support reactions
a
, ,
0
0
v B v C
t
L W
R W
, ,
, ,
0 0
C v C v B
C v C v C
R W
R W a L
C
L R W a
L
9
Exercise
Virtual Work for Rigid Bodies #2
0
( ) ( ) 0
( ) ( ) 0
t
A v v v C v v
W
R W a R L
R R W R L W
10
( ) ( ) 0
0 and 0
A C v C v
A C C
R R W R L Wa
R R W R L Wa
11
Virtual Work
Virtual Work for Deformable Bodies
t e i
W W W
11
Virtual Work
Internal Virtual Work from Axial Load N
N A A
A
i N,
( v )A
A
w N dA x A
,
, v
i N v
i N N x
w N dx w
,
L
i N v
L
w N dx
v v Nv E EA
A vi N
w N N dx
12
, i N
L
w dx
EA
13
Virtual Work
Internal Virtual Work from Torsion
, A v
i T
L
w T T dx GJ
13
Virtual Work
Internal Virtual Work from Bending
, A v
i M
L
w M M dx
EI
14
15
Virtual Work
Internal Virtual Work from Shear ForceS A
, ( )
i S v
A
S A
w dA x
,
( ) ( v )A i S
S dA x w A
,
, v
i S i S
v L
S x
w S dx
w
, A v
i S
w S S dx
GA
L
v v
v G
S GA
15
L GAVirtual Work
Virtual Work from External Loads
w W P
, ,
( )
e v y v x
V
e v
w
w W P
M T
w x x w
( ) , dL
e w x v y x
w d
(
( ) )e v y v x V v v y
W W P M T w x dx
, , ,
( ( ) )
( )
e v y v x V v v y
L
A v A v A v A v
i A v
N N S S M M T T
W dx dx dx dx M
EA GA EI GJ
16
L EA L GA L EI L GJ
17
Exercise Virtual Work for Deformable Bodies #1
Determine the bending moment at B
a b
,
v B a b
a bb
17
Exercise Virtual Work for Deformable Bodies #2
Determine the bending moment at B (1 a) L
(1 )
0
B b b
W
, 0
0
t
v B B B
W
W M
L
B
B
Wa M L b M Wab
18
MB
L
19
Exercise Virtual Work for Truss #1
Determine the force in AB19
Exercise Virtual Work for Truss #2
, 3
4
v B
4 ,
4 3
0
v B C
Wt
30 , 0
40 kN
t
C BA v B
BA
F F
20
21
Exercise Virtual Work for Cantilever Beam #1
Determine the end deflection21
Exercise Virtual Work for Cantilever Beam #2
( )2
2
1( )
A
v
M w L x
M L x
,
3
( )
1 (1)
( )
v
i M B
A v
W v
M M w
W dx L x dx
,
4
, 0
( )
2
( )
8
i M
L L
L i M
W dx L x dx
EI EI
W w L x
EI
, 0
4 ,
8 From (1), 1
8
i M
B i M
EI
v W wL
EI
22
23
Strain Energy Definition
Energy
Strain energy U: energy stored in member
Complementary energy C: no physical meaning but obeys the
Complementary energy C: no physical meaning but obeys the law of energy conservation
yU Pdy C
P ydP23
0U Pdy C
0 ydPStrain Energy Relationships
Energy
dU dC
,
Assuming function n
dU dC
P y
dy dP
P by
1/
0 0
1 ( )
y P n
P y n
U Pdy P dP
n b
0
0D t i d f
y n
C ydP n by dy
U C
Determine and for linear elastic material
U C
24
25
Complementary Energy Principle
Energy
For an elastic body in equilibrium under the action of For an elastic body in equilibrium under the action of applied forces, the true internal forces (or stresses) and reactions are those for which the total complementary energy has a stationary value
energy has a stationary value.
Compatibility
1 n 0
t e i V r r
r
W W W ydP P
1
0 1
( ) ( ) 0
r P n
i e V r r
r
C C ydP P
25
Example Deflection #1
Energy
Determine the deflection,
cross sectional area A = 1800 mm22, E = 200 GPa.
C k F L F
22 1 2
0
i i i
i i i
F L F C
P A E P
26
27
Example Deflection #2
Energy
Real load
Imaginary load
27
Example Deflection #3
Energy
6, 2 5 2
1
6
1 1268 10 N mm
3.52 mm (1800 mm )(2 10 N/mm )
1 880 10 N
k i
B v i i
i k
F L F
AE P
F
6, 2 5 2
1
1 880 10 N mm
2.44 mm (1800 mm )(2 10 N/mm )
k
D h i i i
i
F L F
AE P
28
29
Example SI Problem #1
Energy
Redundant
0 1 k Fi
i i
i
C dF P
member
1
1
0
i
k i
i i
C dF
R R
11 1
0 (4.83 2.707 ) 0
0 56
k i
i i i
F L F RL PL
AE R AE
R 0.56P
R P
29
Unit Load
Description Energy
k F F Li,0 i,1 i
0
With applied dummy load
i
f
k F n
i i r r
P
C dF P
1 C
i A Ei i
Real load
1 0 1
1
0
i i r r
i r
k i
i C
f i f
C F
P P
Imaginary load
M M
1
1
f i f
k
i
C i
i f
F P
0 1
0 1 M
T
M M dz EI
T T dz Assume unit load instead of Pf T
GJ dz30
31
Example Unit Load #1
Energy
Determine displacement at D
xx
M MEIEI0 1 ds
T TGJGJ0 1 ds31
Example Unit Load #1
Energy
l wl x2 dx wl4
0 42
11 1
( )
24 2
x
y
EI dx EI wl EI GJ
4
24 2
1 1
( )
6 2
z
EI GJ wl EI GJ
32
33
Flexibility Method
Description Energy Remove a redundant member to formulate a SD problem
Solve for displacements of the SD problem
Determine redundant load that negate the same displacementsp
33
Exercise
Flexibility Method #1 Energy0,j 1,j j
n n F F L
F F L
, 1,
, ,1 1
2
j j j
n n
a j j j BD
j j
F F L AE AE F L
1,21
j
n j
BD j
a F L
AE
34
BD X aBD BD 0
35
Exercise
Flexibility Method #2 Energy2 71PL 4 82L
2.71 4.82
,
From 0
BD BD
BD BD BD
PL L
AE a AE
X a
0.56 Ans
XBD P
35
Potential Energy Total Potential Energy
Energy
Total potential energy TPE is the sum of its strain (internal)
energy Ugy and the potential energy Vp gy of the applied external loadspp
Zero potential energy at the unloaded state
1 1
( )
r
n n
r r
r r
V V P
0
TPE TPE
( )
y
n
U V P
U P
U V
dy Py
1
TPE ( )
r r
r
U P
U V
36
37
Potential Energy Stability
Energy
(U V ) 0
37
Exercise
TPE #1Energy
Assume sinB z
v v L
0 at 0 and
and / 0 at / 2
B
L
v z z L
v v dv dx z L
2 222 4 2 4
2
M d v
U dz EI
EI dz
EI EI
38
EI2
vB24 4 sin2 z v EIB24 3 4U dz
L
L L
39
Exercise
TPE #2Energy
2 4
3 4
4
B
B
TPE U V v EI Wv L
4 3
3 3
( )
4 0 2
B
B B
U V v EI
v L v
WL WL
39
4
2 as compared to exact solution
B 48
WL WL
v EI EI
Principle of Superposition Description
Energy
If th b d i li l l ti th If the body is linearly elastic, the effect of a number of forces is the sum of the effects of the forces applied separately.
40
41
Reciprocal Theorem Description
Energy
Total deflection at point 1 in the direction of from all loadsP1
influence or flexibility coefficient aij
a P a P a P
1 11 1 12 2 1
2 21 1 22 2 2
...
...
n n n n
a P a P a P a P a P a P
1 1 2 2 ...
n a Pn a Pn a Pnn n
1 11 12 1 1
2 21 22 2 2
n n
a a a P
a a a P
41
1 2
n an an ann Pn aij aji
Exercise
Reciprocal Theorem #1 EnergyThe 800 mm-long beam is propped at 500 mm, giving
, g g
0 mm at 0 mm
0.3 mm at 100 mm
v x
v x
1.4 mm at 200 mm 2.5 mm at 300 mm 1 9 mm at 400 mm
v x
v x
v x
1.9 mm at 400 mm 0 mm at 500 mm 2.3 mm at 600 mm
v x
v x
v x
4.8 mm at
v x
700 mm 10.6 mm at 800 mm
v x
B 42
Determine when the applied loads change.
43
Exercise
Reciprocal Theorem #2 Energy
due to 40 N at 1.4 mm due to 40 N at 1.4 mm
D C
v C
v D
due to 30
due to 30 N at 1.4 (3 / 4) 1.05 mm N at
C C
v D
v D
due to 10 N at 2.4 (1/
due to 10 N at
4) 0 6 mm
vC E
v E
,
due to 10 N at 0.6 mm 1.05 0.6 1.65
C tot C al
v E
v
1
mm tan 1.65
43
tan 1
B 300