• Tidak ada hasil yang ditemukan

Lecture Note 4

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lecture Note 4"

Copied!
43
0
0

Teks penuh

(1)

1

Lecture Note 4 Lecture Note 4

Virtual Work & Energy Method

Second Semester, Academic Year 2012, Department of Mechanical Engineering

Chulalongkorn University

(2)

Objectives

Use the energy method to analyze structures

Describe the characteristics and properties as well as

Describe the characteristics and properties as well as determine strain energy and complementary energy and potential energy

D ib th i i l f i t l k d th i i l

Describe the principle of virtual work and use the principle to determine equilibrium, stability and analyze simple

elasticity problems with emphasis on bending problems

A simple statically indeterminate problems with emphasis on bending

2

(3)

3

Topics

Virtual Work

Strain energy complementary and potential energy

Strain energy, complementary and potential energy

Deflections

Statically indeterminate problems

3

(4)

Work By a Force

 

  cos WF F dr

F dr cos F dr

 work WF

 force that done the work displacement

F

F dr

4

(5)

5

Work By a Couple

  

 ( )  ( ) ( )

2 2

M

r r

W F F Fr

W M M  magnitude of couple that do the work

5

M

W M

  small angle of rotation

(6)

Virtual Work

Virtual Movements

Imaginary or virtual movements is assumed and does not actually exist.

Virtual displacement

Virtual rotation

Virtual rotation

Virtual deformation

Virtual movements are infinitesimally small and does not violate physical constraints.

Principle of virtual work is an alternative form of Principle of virtual work is an alternative form of

Newton’s laws that can analyze the system in equilibrium under work and energy concepts.

6

(7)

7

Virtual Work

Principle of Virtual Work

Consider an object in equilibrium

Th i t l k d b ll f t th bj t ith

The virtual work done by all forces to move the object with a virtual displacement

1 r cos

F k v k

k

W F

 In equilibrium, WF 0

7

(8)

Virtual Work

Principle of Virtual Work for Rigid Bodies

 

t e i

W W W

total virtual work done external work done Wt

W

external work done internal virtual work

e i

W W

ei

W W

8

(9)

9

Exercise

Virtual Work for Rigid Bodies #1

Determine the support reactions

  a

 

  

 

, ,

0

0

v B v C

t

L W

R  W 

   

, ,

, ,

0 0

C v C v B

C v C v C

R W

R W a L

C

L R W a

L

9

(10)

Exercise

Virtual Work for Rigid Bodies #2

 

 

       

 0

( ) ( ) 0

( ) ( ) 0

t

A v v v C v v

W

R W a R L

R R W R L W

10

     

    

( ) ( ) 0

0 and 0

A C v C v

A C C

R R W R L Wa

R R W R L Wa

(11)

11

Virtual Work

Virtual Work for Deformable Bodies

 

t e i

W W W

11

(12)

Virtual Work

Internal Virtual Work from Axial Load

   N

N A A

A

i N,

( v )

A

A

w N dA x A

 

 

,

, v

i N v

i N N x

w N dx w



,

L

i N v

L

w N dx

v  vNv E EA



A v

i N

w N N dx

12



, i N

L

w dx

EA

(13)

13

Virtual Work

Internal Virtual Work from Torsion



, A v

i T

L

w T T dx GJ

13

(14)

Virtual Work

Internal Virtual Work from Bending



, A v

i M

L

w M M dx

EI

14

(15)

15

Virtual Work

Internal Virtual Work from Shear Force

SA

 

   

, ( )

i S v

A

S A

w dA x

  

,

( ) ( v )

A i S

S dA x w A

  

 

 

,

, v

i S i S

v L

S x

w S dx

w

 

, A v

i S

w S S dx

GA

   

L

v v

v G

S GA

15

L GA
(16)

Virtual Work

Virtual Work from External Loads

    

w W P

 

    

 

, ,

( )

e v y v x

V

e v

w

w W P

M T

w x x w

( ), d

L

e w x v y x

w d

 

(      

( ))

e v y v x V v v y

W W P M Tw x dx

 

    

 

    

, , ,

( ( ) )

( )

e v y v x V v v y

L

A v A v A v A v

i A v

N N S S M M T T

W dx dx dx dx M

EA GA EI GJ

16

   

L EA L GA L EI L GJ

(17)

17

Exercise Virtual Work for Deformable Bodies #1

Determine the bending moment at B

 

ab

 

  

,

v B a b

a bb

17

(18)

Exercise Virtual Work for Deformable Bodies #2

Determine the bending moment at B

     (1 a)  L

 

     (1 )  

0

B b b

W

,   0

0

t

v B B B

W

W M

  L

B

B

Wa M L b M Wab

18

MB

L

(19)

19

Exercise Virtual Work for Truss #1

Determine the force in AB

19

(20)

Exercise Virtual Work for Truss #2

 

, 3

4

v B

 

  

4 ,

4 3

0

v B C

Wt

 

   

30 , 0

40 kN

t

C BA v B

BA

F F

20

(21)

21

Exercise Virtual Work for Cantilever Beam #1

Determine the end deflection

21

(22)

Exercise Virtual Work for Cantilever Beam #2

  

  

( )2

2

1( )

A

v

M w L x

M L x

,

3

( )

1 (1)

( )

v

i M B

A v

W v

M M w

WdxL x dx

 

    

 

,

4

, 0

( )

2

( )

8

i M

L L

L i M

W dx L x dx

EI EI

W w L x

EI  

 

, 0

4 ,

8 From (1), 1

8

i M

B i M

EI

v W wL

EI

22

(23)

23

Strain Energy Definition

Energy

Strain energy U: energy stored in member

Complementary energy C: no physical meaning but obeys the

Complementary energy C: no physical meaning but obeys the law of energy conservation

y

U Pdy C

P ydP

23

0

U Pdy C

0 ydP
(24)

Strain Energy Relationships

Energy

dU dC

 

 ,

Assuming function n

dU dC

P y

dy dP

P by

 

1/

0 0

1 ( )

y P n

P y n

U Pdy P dP

n b

0

0

D t i d f

y n

C ydP n by dy

U C

 Determine and for linear elastic material

U C

24

(25)

25

Complementary Energy Principle

Energy

For an elastic body in equilibrium under the action of For an elastic body in equilibrium under the action of applied forces, the true internal forces (or stresses) and reactions are those for which the total complementary energy has a stationary value

energy has a stationary value.

Compatibility

   

 

1 n 0

t e i V r r

r

W W W ydP P

 

 

 

 

1

0 1

( ) ( ) 0

r P n

i e V r r

r

C C ydP P

25

(26)

Example Deflection #1

Energy

Determine the deflection,

cross sectional area A = 1800 mm22, E = 200 GPa.

C k F LF

     

2

2 1 2

0

i i i

i i i

F L F C

P A E P

26

(27)

27

Example Deflection #2

Energy

Real load

Imaginary load

27

(28)

Example Deflection #3

Energy

  

   

 

6

, 2 5 2

1

6

1 1268 10 N mm

3.52 mm (1800 mm )(2 10 N/mm )

1 880 10 N

k i

B v i i

i k

F L F

AE P

F

  

   

 

6

, 2 5 2

1

1 880 10 N mm

2.44 mm (1800 mm )(2 10 N/mm )

k

D h i i i

i

F L F

AE P

28

(29)

29

Example SI Problem #1

Energy

Redundant



0  

1 k Fi

i i

i

C dF P

member

  

1

1

0

i

k i

i i

C dF

R R

    

 

1

1 1

0 (4.83 2.707 ) 0

0 56

k i

i i i

F L F RL PL

AE R AE

R  0.56P

R P

29

(30)

Unit Load

Description Energy

 

k F F Li,0 i,1 i

 

0

With applied dummy load

i

f

k F n

i i r r

P

C dF P

 

1 C

i A Ei i

Real load

   

 

  

1 0 1

1

0

i i r r

i r

k i

i C

f i f

C F

P P

Imaginary load

M M

  

1

1

f i f

k

i

C i

i f

F P

 

 

0 1

0 1 M

T

M M dz EI

T T dz Assume unit load instead of PfT

GJ dz

30

(31)

31

Example Unit Load #1

Energy

Determine displacement at D

 xx

 

M MEIEI0 1 ds

 

T TGJGJ0 1 ds

31

(32)

Example Unit Load #1

Energy

l wl x2 dx wl4

    

  

0 4

2

11 1

( )

24 2

x

y

EI dx EI wl EI GJ

  4

24 2

1 1

( )

6 2

z

EI GJ wl EI GJ

32

(33)

33

Flexibility Method

Description Energy

Remove a redundant member to formulate a SD problem

Solve for displacements of the SD problem

Determine redundant load that negate the same displacementsp

33

(34)

Exercise

Flexibility Method #1 Energy

0,j 1,j j

n n F F L

F F L

 

, 1,

, ,

1 1

2

j j j

n n

a j j j BD

j j

F F L AE AE F L

1,2

1

j

n j

BD j

a F L

AE

34

 BD X aBD BD  0

(35)

35

Exercise

Flexibility Method #2 Energy

2 71PL 4 82L

  

  

2.71 4.82

,

From 0

BD BD

BD BD BD

PL L

AE a AE

X a

 0.56 Ans

XBD P

35

(36)

Potential Energy Total Potential Energy

Energy

Total potential energy TPE is the sum of its strain (internal)

energy Ugy and the potential energy Vp gy of the applied external loadspp

Zero potential energy at the unloaded state

1 1

( )

r

n n

r r

r r

V V P

  

 

 

0

TPE TPE

( )

y

n

U V P

U P

U V

dy Py

 

1

TPE ( )

r r

r

U P

U V

36

(37)

37

Potential Energy Stability

Energy

(U V ) 0

37

(38)

Exercise

TPE #1

Energy

 

Assume sinB z

v v L

  

  

0 at 0 and

and / 0 at / 2

B

L

v z z L

v v dv dx z L

222

2 4 2 4

2

M d v

U dz EI

EI dz

EI EI

38

  

EI2

vB24 4 sin2 zv EIB24 3 4

U dz

L

L L

(39)

39

Exercise

TPE #2

Energy

2 4

3 4

4

B

B

TPE U V v EI Wv L

    

4 3

3 3

( )

4 0 2

B

B B

U V v EI

v L v

WL WL

    

39

4

2 as compared to exact solution

B 48

WL WL

v EI EI

(40)

Principle of Superposition Description

Energy

If th b d i li l l ti th If the body is linearly elastic, the effect of a number of forces is the sum of the effects of the forces applied separately.

40

(41)

41

Reciprocal Theorem Description

Energy

Total deflection at point 1 in the direction of from all loadsP1

influence or flexibility coefficient aij

a P a P a P

    

    

1 11 1 12 2 1

2 21 1 22 2 2

...

...

n n n n

a P a P a P a P a P a P

    

1 1 2 2 ...

n a Pn a Pn a Pnn n

     

    

    

    

    

1 11 12 1 1

2 21 22 2 2

n n

a a a P

a a a P

41

    

    

    

     

1 2

n an an ann Pn aij aji

(42)

Exercise

Reciprocal Theorem #1 Energy

The 800 mm-long beam is propped at 500 mm, giving

 

  

, g g

0 mm at 0 mm

0.3 mm at 100 mm

v x

v x

  

  

1.4 mm at 200 mm 2.5 mm at 300 mm 1 9 mm at 400 mm

v x

v x

v   x

 

 

1.9 mm at 400 mm 0 mm at 500 mm 2.3 mm at 600 mm

v x

v x

v x

 4.8 mm at

v x

 

700 mm 10.6 mm at 800 mm

v x

B 42

Determine when the applied loads change.

(43)

43

Exercise

Reciprocal Theorem #2 Energy

 

  

due to 40 N at 1.4 mm due to 40 N at 1.4 mm

D C

v C

v D

    

 

 due to 30

due to 30 N at 1.4 (3 / 4) 1.05 mm N at

C C

v D

v D

   

 

due to 10 N at 2.4 (1/

due to 10 N at

4) 0 6 mm

vC E

v E

    

,

due to 10 N at 0.6 mm 1.05 0.6 1.65

C tot C al

v E

v

1

mm tan 1.65

43

  tan 1

B 300

Referensi

Dokumen terkait

field potential  or the  electrostatic potential ) is the amount of electric potential energy that a unitary point electric charge would have if located at any point in space, and

Stolper-Samuelson Theorem 1941 In the 2x2 production model with the factor intensity assumption, if pi increases, the equilibrium price of factor more intensively used in the

Pengertian Bisnis • Business is an enterprise that provides products or services desired by the customers Madura, 2007:3 • Businesses are organizations that produce or sell goods or

Adjournment of poll in emergencies.—1 If at an election the proceedings at any polling station provided under section 25 or at the place fixed under sub-section 1 of section 29 for the

3.4.1.3 Every member intended to remain elastic under 1 design' earthquake conditions, and resisting the moments caused by frictional forces in sliding bearings, should have a flexural

Radius of gyration It is a distance of a point from an axis of rotation inside the body such that if the whole mass of a body is concentrated in a particle at that point, its moment

Radius of gyration It is a distance of a point from an axis of rotation inside the body such that if the whole mass of a body is concentrated in a particle at that point, its moment

~ an ordered array of entities which is invariant under coordinate transformation; includes scalars & vectors ~ 3n 0th order – 1 component, scalar mass, length, pressure, energy 1st