• Tidak ada hasil yang ditemukan

Machine Learning

N/A
N/A
Protected

Academic year: 2025

Membagikan "Machine Learning"

Copied!
41
0
0

Teks penuh

(1)

Machine Learning

Prabhas Chongstitvatana Chulalongkorn University

(2)

More Information

Search “Prabhas Chongstitvatana”

Get to my homepage

(3)

Why AI is popular today?

(4)

Performance in "human task"

• Tagging Faces

• Search Music

• Personal assistance

• Play Go

(5)

Machine Learning

Learning from data

Task : classification

Learn:

Association rule

Decision tree

Self improvement (reinforcement learning)

(6)

• Artificial Neural Networks

• Deep learning

(7)
(8)

Perceptron

Rosenblatt, 1950

(9)

Multi-layer perceptron

Michael Nielsen, 2016

(10)

Sigmoid function

(11)

Artificial Neural Network 3-layer

(12)
(13)

Digit recognition NN

24x24 = 784

0.0 white 1.0 black

(14)

Training NN

Backpropagation is a fast way to compute this,

1986

(15)

Convolutional Neural Network

3 main types of layers

Convolutional layer

Pooling layer

Fully Connected layer

(16)

First layer

Drawing by Michael Zibulevsky

(17)

Feature map

(18)

Pooling operation

(19)

Activation function

(20)

Convolutional Neural Network

(21)

CIFA-10 image dataset

(22)

Example of CNN layer

(23)

Convolutional layer

(24)

Parameters

ImageNet challenge in 2012

images 227x227x3

convolutional layer

receptive field F = 11, S = 4, with 96 filters

55x55x96 = 290,400 neurons

each neuron connects to 11x11x3 = 363+1 bias weights

total 290400*364 = 105,705,600 parameters

(25)

Human Pose Estimation

(26)
(27)

Automatic Speech

Recogniti on

(28)

Long Short Term Memory

(29)
(30)

AlphaGo vs Lee Seidol, March 2016

(31)

Future of Go Summit 2017

(32)

Alpha Go

"Mastering the game of Go with deep neur al networks and tree search"

. Nature. 529 (7587): 484–489.

•Deep learning

•Monte Carlo Tree search

(33)

Monte Carlo Tree Search

(34)

Computation power

The second generation TPU was announced in May 2017. The individual TPU ASICs are rated at 45 TFLOPS

(35)
(36)
(37)

Top500.org

cores TFlop/s Power kW 1 Sunway 10M 93K 15K

...

5 Sequoia 1M 15K 7.8K ..

10 Trinity 0.3M 8K 4K ...

500 Bull 0.01M 0.4K 0.2K

(38)

DriverLess car

(39)

State of the art

•Learn everything

•No user program

•Self improvement

(40)

Team work

(41)

More Information

Search “Prabhas Chongstitvatana”

Get to my homepage

Referensi

Dokumen terkait

Pada umumnya, deep neural network memiliki lebih dari 3 layers (input layer, N ≥ 2 hidden layers, output layer ), dengan kata lain adalah MLP dengan lebih banyak layer.. Karena

Pada tahun 2016 telah dilakukan penelitian oleh I Wayan Suartika, dkk mengenai salah satu metode machine learning yaitu Convolutional Neural Network (CNN) yang digunakan

Using a fully convolutional network and other high-level hierarchical feature extraction methodologies, they describe the application of deep learning techniques to the segmentation

The concise description of CNN would be a set of multiplication of input and convolutional layers for extraction of important features which further will be used in fully connected

Figure 3.7: Training data set 3.6 Machine Learning Algorithms Because of their established accuracy rates, we created a methodology using the convolutional neural network CNN and

Conclusion With the addition of a 0.2 dropout in the number of 3-layer convolution layers, this study successfully implemented the convolutional neural network approach for the

Second, convolutional neural network CNN, deep neural network, and multi-layer perceptron models were trained using time-domain ultrasonic signals obtained from additively manufactured

Mpesiana Covid‐19: Automatic Detection From X‐ ray Images Utilizing Transfer Learning With Convolutional Neural Networks 2020 Convolution al Neural Network CNN Hasil penelitian ini