• Tidak ada hasil yang ditemukan

Simple Digital Filters

N/A
N/A
Protected

Academic year: 2023

Membagikan "Simple Digital Filters"

Copied!
10
0
0

Teks penuh

(1)

1

Copyright © 2005, S. K. Mitra

Simple Digital Filters Simple Digital Filters

• Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications

• We now describe several low-order FIR and IIR digital filters with reasonable selective frequency responses that often are satisfactory in a number of applications

2

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• FIR digital filters considered here have integer-valued impulse response coefficients

• These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations

3

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

Lowpass FIR Digital Filters

• The simplest lowpass FIR digital filter is the 2-point moving-average filter given by

• The above transfer function has a zero at and a pole atz= 0

• Note that here the pole vectorhas a unity magnitude for all values ofω

z z z

z

H 2

1 1 1

2 0 1

= + +

= ( ) )

(

−1

= z

4

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• On the other hand, asωincreases from0to π, the magnitude of the zero vector

decreases from a value of2, the diameter of the unit circle, to0

• Hence, the magnitude response is a monotonically decreasing function of ω fromω= 0toω= π

| ) (

|H0 ejω

5

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The maximum value of the magnitude function is1 atω= 0, and the minimum value is0 atω= π, i.e.,

• The frequency response of the above filter is given by

0

1 0

0

0( )|= , | ( )|=

|H ej H ejπ

) 2 / cos(

)

( /2

0 ejω =ejω ω H

6

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The magnitude response can be seen to be a monotonically decreasing function ofω

) 2 / cos(

| ) (

|H0 ejω = ω

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

First-order FIR lowpass filter

(2)

7

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The frequency at which

is of practical interest since here the gain in dBis given by

since the dc gain ωc

= ω

) 2 (

) 1

( 0 0

0 j j

e H e

H ωc =

) (ωc G

dB 3 2 log 20 ) ( log

20 10 010 ≅−

= H ej

) (ωc

G 20log10 ( c)

ej

H ω

=

0 20

0 0

10 =

= log ( ) )

( H ej

G

8

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• Thus, the gainG(ω) at is

approximately3 dB less than the gain at ω

= 0

• As a result, is called the3-dB cutoff frequency

• To determine the value of we set which yields

ωc

= ω

ωc

ωc

2 π/

=

ωc 2

2 1 2

0( )| cos ( /2)

|H ejωc = ωc =

9

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The 3-dBcutoff frequency can be considered as the passband edge frequency

• As a result, for the filter the passband width is approximatelyπ/2

• The stopband is fromπ/2 toπ

• Note: has a zero at orω= π, which is in the stopband of the filter

ωc

) (z H0

) (z

H0 z=−1

10

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• A cascade of the simple FIR filter results in an improved lowpass frequency response as illustrated below for a cascade of3 sections

) ( )

( 21 1

0 z = 1+z H

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

First-order FIR lowpass filter cascade

Simple FIR Digital Filters Simple FIR Digital Filters

• The 3-dB cutoff frequencyof a cascade of Msections is given by

• For M= 3, the above yields

• Thus, the cascade of first-order sections yields a sharper magnitude response but at the expense of a decrease in the width of the passband

) 2 ( cos

2 1 1/2M

c=

ω

π

= ωc 0.302

Simple FIR Digital Filters Simple FIR Digital Filters

• A better approximation to the ideal lowpass filter is given by a higher-order moving- average filter

• Signals with rapid fluctuations in sample values are generally associated with high- frequency components

• These high-frequency components are essentially removed by an moving-average filter resulting in a smoother output

(3)

13

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

Highpass FIR Digital Filters

• The simplest highpass FIR filter is obtained from the simplest lowpass FIR filter by replacingzwith

• This results in

) ( )

( 1

2 1 1 z = 1−z H

z

14

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• Corresponding frequency response is given by

whose magnitude response is plotted below ) 2 / sin(

)

( /2

1ejω = jejω ω H

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

First-order FIR highpass filter

15

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The monotonically increasing behavior of the magnitude function can again be demonstrated by examining the pole-zero pattern of the transfer function

• The highpass transfer function has a zero atz= 1 orω= 0 which is in the stopband of the filter

) (z H1

) (z H1

16

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• Improved highpass magnitude response can again be obtained by cascading several sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of the form

is obtained by replacingzwith in the transfer function of a moving average filter

z

n M

n n

M z

z

H =

=01 1

1( ) ( 1)

17

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• An application of the FIR highpass filters is in moving-target-indicator (MTI) radars

• In these radars, interfering signals, called clutters, are generated from fixed objects in the path of the radar beam

• The clutter, generated mainly from ground echoes and weather returns, has frequency components near zero frequency (dc)

18

Copyright © 2005, S. K. Mitra

Simple FIR Digital Filters Simple FIR Digital Filters

• The clutter can be removed by filtering the radar return signal through atwo-pulse canceler, which is the first-order FIR highpass filter

• For a more effective removal it may be necessary to use a three-pulse canceler obtained by cascading two two-pulse cancelers

) ( )

( 21 1

1 z = 1−z H

(4)

19

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Lowpass IIR Digital Filters

• We have shown earlier that the first-order causal IIR transfer function

has a lowpass magnitude responsefor α> 0 1

0 , 1 )

( 1 <α<

α

= − z z K H

20

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• An improved lowpass magnitude response is obtained by adding a factor to the numerator of transfer function

• This forces the magnitude response to have a zero at ω= πin the stopbandof the filter

) 1 ( +z1

1 0 1 ,

) 1 ) (

( 1

1 <α<

α

= + z

z z K

H

21

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• On the other hand, the first-order causal IIR transfer function

has a highpass magnitude responsefor α< 0

0 1 , 1 )

( 1 − <α<

α

= − z z K H

22

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• However, the modified transfer function obtained with the addition of a factor

to the numerator

exhibits a lowpass magnitude response )

1 ( +z1

0 1 1 ,

) 1 ) (

( 1

1 − <α<

α

= + z

z z K

H

Simple IIR Digital Filters Simple IIR Digital Filters

• The modified first-order lowpass transfer functionfor both positive and negative values of αis then given by

• As ωincreases from 0to π, the magnitude of the zero vectordecreases from a value of 2to 0

1 0 , 1

) 1 ) (

( 1

1 <α<

α

= + z z z K

HLP

Simple IIR Digital Filters Simple IIR Digital Filters

• The maximum values of the magnitude function is at ω= 0and the minimum value is 0at ω= π, i.e.,

• Therefore, is a monotonically decreasing functionof ωfrom ω= 0to ω= π

) 1 /(

2K −α

0 ) ( 1 ,

) 2

( 0 =

α

= − LP jπ

j

LP K H e

e H

| ) (

|HLP ejω

(5)

25

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• For most applications, it is usual to have a dc gainof 0dB, that is to have

• To this end, we choose resulting in the first-order IIR lowpass transfer function

• The above transfer function has a zero at i.e., at ω= π which is in the stopband

1 0 , 1

1 2 ) 1

( 1

1 ⎟⎟ <α<

⎜⎜

⎛ α

− + α

= −

z z z

HLP

1

| ) (

|H ej0 = 2 / ) 1 ( −α

= K

26

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Lowpass IIR Digital Filters

• A first-order causal lowpass IIR digital filter has a transfer function given by

where|α| < 1 for stability

• The above transfer function has a zero at i.e., atω= π which is in the stopband

⎟⎟⎠

⎜⎜⎝

⎛ α

− + α

= − 11 1

1 2 ) 1 (

z z z

HLP

−1

= z

27

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• has a real pole atz= α

• As ωincreases from 0to π, the magnitude of the zero vectordecreases from a value of 2to 0, whereas, for a positive value of α, the magnitude of the pole vectorincreases from a value of to

• The maximum value of the magnitude function is1atω= 0, and the minimum value is0atω= π

α

1 1+α

) (z HLP

28

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• i.e.,

• Therefore, is a monotonically decreasing function ofωfromω= 0 toω= π as indicated below

0

| ) (

| , 1

| ) (

|HLP ej0 = HLP ejπ =

| ) (

|HLP ejω

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

α = 0.8 α = 0.7 α = 0.5

10-2 10-1 100

-20 -15 -10 -5 0

ω/π Gain, dB α = 0.8

α = 0.7 α = 0.5

29

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The squared magnitude function is given by

• The derivative of with respect toωis given by

) cos 2 1 ( 2

) cos 1 ( ) 1

| ( ) (

| 2

2 2

ω α

− α +

ω + α

= −

ω j LP e H

|2

) (

|HLP ejω

2 2 2 2

2

) cos 2 1 ( 2

sin ) 2 1 ( ) 1 (

| ) (

|

α + ω α

ω α + α + α

=− ω

ω

d e H d LP j

30

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

in the range verifying again the monotonically decreasing behavior of the magnitude function

• To determine the3-dB cutoff frequency we set

in the expression for the square magnitude function resulting in

0 /

| ) (

|H eω 2dω≤

d LP j 0≤ω≤π

2

| 1 ) (

|HLP ejωc 2=

(6)

31

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

or

which when solved yields

• The above quadratic equation can be solved for αyielding two solutions

2 1 ) cos 2 1 ( 2

) cos 1 ( ) 1 (

2

2 =

ω α

− α +

ω + α

c c

c

c = +α − α ω

ω + α

− ) (1 cos ) 1 2 cos 1

( 2 2

1 2

cos 2

α +

= α ωc

32

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The solution resulting in a stabletransfer function is given by

• It follows from

that is a BR functionfor|α| < 1 ) cos 2 1 ( 2

) cos 1 ( ) 1

| ( ) (

| 2

2 2

ω α

− α +

ω + α

= −

ω j LP e H

) (z HLP

) (z HLP

c

ωωc

= − α cos

sin 1

33

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Highpass IIR Digital Filters

• A first-order causal highpassIIR digital filter has a transfer function given by

where|α| < 1 for stability

• The above transfer function has a zero at z= 1 i.e., atω= 0 which is in the stopband

⎟⎟

⎜⎜

= +

1 1

1 1 2 1

z z z

HHP

α ) α

(

34

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Its 3-dB cutoff frequency is given by

which is the same as that of

• Magnitude and gain responses of are shown below

c

c ω

ω

=

α (1 sin )/cos ωc

) (z HLP

) (z HHP

10-2 10-1 100

-20 -15 -10 -5 0

ω/π

Gain, dB

α = 0.8 α = 0.7 α = 0.5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

α = 0.8 α = 0.7 α = 0.5

Simple IIR Digital Filters Simple IIR Digital Filters

• is a BR function for|α| < 1

• Example -Design a first-order highpass digital filter with a 3-dB cutoff frequency of 0.8π

• Now, and

• Therefore ) (z HHP

587785 . 0 ) 8 . 0 sin(

)

sin(ωc = π = 80902 . 0 ) 8 . 0 cos( π =−

5095245 .

0 cos / ) sin 1

( − ω ω =−

=

α c c

Simple IIR Digital Filters Simple IIR Digital Filters

• Therefore,

⎟⎟

⎜⎜

⎛ +

= −

1 1

5095245 0

1 245238 1 0

z z . .

⎟⎟

⎜⎜

= +

1 1

1 1 2 1

z z z

HHP

α ) α

(

(7)

37

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Bandpass IIR Digital Filters

• A 2nd-order bandpass digital transfer function is given by

• Its squared magnitude function is

⎟⎟⎠

⎜⎜ ⎞

α + α + β

− α

= − 21 2 )

1 ( 1

1 2

) 1

( z z

z z HBP

)2

( jω

BP e H

] 2 cos 2 cos ) 1 ( 2 )

1 ( 1 [ 2

) 2 cos 1 ( ) 1 (

2 2

2 2

2

ω α + ω α + β

− α + α + β +

ω

− α

= −

38

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• goes to zero atω= 0 andω=π

• It assumes a maximum value of1 at , called the center frequencyof the bandpass filter, where

• The frequencies and where becomes1/2 are called the3-dB cutoff frequencies

|2

) (

|HBP ejω

|2

) (

|HBP ejω ωo

= ω

) ( cos 1β

= ωo

1

ωc ωc2

39

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The difference between the two cutoff frequencies, assuming is called the3-dB bandwidthand is given by

• The transfer function is a BR function if|α| < 1 and|β| < 1

1

2 c

c >ω ω

) (z HBP

1 1 2−ω =cos ω

= c c

Bw

⎜ ⎞

⎛ α +

α 1 2

2

40

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Plots of are shown below|HBP(ejω)|

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

β = 0.34 α = 0.8 α = 0.5 α = 0.2

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

α = 0.6 β = 0.8 β = 0.5 β = 0.2

41

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Example -Design a 2ndorder bandpass digital filter with center frequency at0.4π and a 3-dB bandwidthof0.1π

• Here and

• The solution of the above equation yields:

α= 1.376382 andα= 0.72654253

9510565 .

0 ) 1 . 0 cos(

) cos(

1 2

2= = π =

α +

α

Bw

309017 . 0 ) 4 . 0 cos(

)

cos(ω = π =

=

β o

42

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The corresponding transfer functions are

and

• The poles of are atz= 0.3671712 and have a magnitude> 1

± 11425636

1.

j

2 1

2

37638 1 7343424 0

1 18819 1

0

+

− −

=

z z

z z HBP

. .

. )

' (

2 1

2

72654253 0

533531 0 1 13673 1

0

+

= −

z z

z z HBP

. .

. )

" (

)

' (z

HBP

(8)

43

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Thus, the poles of are outside the unit circle making the transfer function unstable

• On the other hand, the poles of are atz= and have a magnitude of0.8523746

• Hence is BIBO stable

• Later we outline a simpler stability test )

' (z

HBP

)

" (z HBP 8095546 0

2667655

0. ± j .

)

" (z HBP

44

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Figures below show the plots of the magnitude function and the group delay of

)

" (z HBP

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

0 0.2 0.4 0.6 0.8 1

-1 0 1 2 3 4 5 6 7

ω/π

Group delay, samples

45

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Bandstop IIR Digital Filters

• A 2nd-order bandstop digital filter has a transfer function given by

• The transfer function is a BR function if|α| < 1 and|β| < 1

⎟⎟⎠

⎜⎜⎝

α + α + β

+ β

− α

= + 11 2 2 )

1 ( 1

2 1 2 ) 1 (

z z

z z z

HBS

) (z HBS

46

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Its magnitude response is plotted below

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

α = 0.8 α = 0.5 α = 0.2

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

ω/π

Magnitude

β = 0.8 β = 0.5 β = 0.2

Simple IIR Digital Filters Simple IIR Digital Filters

• Here, the magnitude function takes the maximum value of1 atω= 0 andω= π

• It goes to0 at , where , called the notch frequency, is given by

• The digital transfer function is more commonly called anotch filter

ωo

=

ω ωo

) ( cos1β

= ωo

) (z HBS

Simple IIR Digital Filters Simple IIR Digital Filters

• The frequencies and where becomes1/2 are called the3-dB cutoff frequencies

• The difference between the two cutoff frequencies, assuming is called the3-dB notch bandwidthand is given by

|2

) (

|HBS ejω

1

ωc ωc2

1

2 c

c >ω ω

1 1 2−ω =cos ω

= c c

Bw

⎜ ⎞

⎛ α +

α 1 2

2

(9)

49

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

Higher-Order IIR Digital Filters

• By cascading the simple digital filters discussed so far, we can implement digital filters with sharper magnitude responses

• Consider a cascade ofKfirst-order lowpass sections characterized by the transfer function

⎟⎟⎠

⎜⎜⎝

⎛ α

− + α

= −

1 1

1 1 2 ) 1 (

z z z

HLP

50

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The overall structure has a transfer function given by

• The corresponding squared-magnitude function is given by

K

LP z

z z

G ⎟⎟

⎜⎜ ⎞

α

⋅ + α

= − 11 1

1 2 ) 1 (

K j

LP e

G

⎢ ⎤

ω α

− α +

ω + α

= −

ω

) cos 2 1 ( 2

) cos 1 ( ) 1

| ( ) (

| 2

2 2

51

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• To determine the relation between its 3-dB cutoff frequency and the parameterα, we set

which when solved forα, yields for a stable :

ωc

2 1 ) cos 2 1 ( 2

) cos 1 ( ) 1 (

2

2 ⎥ =

⎢ ⎤

ω α

− α +

ω + α

K

c c

) (z GLP

c c c

C

C C C

ω +

− ω

− ω

= +

α 1 cos

2 sin cos ) 1 (

1 2

52

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

where

• It should be noted that the expression for α given earlier reduces to

forK= 1

K

C=2(K1)/

c

ωωc

= − α cos

sin 1

53

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• Example -Design a lowpass filter with a 3- dBcutoff frequency at using a single first-order section and a cascade of4 first-order sections, and compare their gain responses

• For the single first-order lowpass filter we have

π

= ωc 0.4

1584 . ) 0 4 . 0 cos(

) 4 . 0 sin(

1 cos

sin

1 =

π π

= + ω

ω

= + α

c c

54

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• For the cascade of4 first-order sections, we substitute K= 4and get

• Next we compute

6818 1 2

2( 1)/ = (4 1)/4= .

= K K C

c c c

C

C C C

ω +

− ω

− ω

= +

α 1 cos

2 sin cos ) 1 (

1 2

) 4 . 0 cos(

6818 . 1 1

) 6818 . 1 ( ) 6818 . 1 ( 2 ) 4 . 0 sin(

) 4 . 0 cos(

) 6818 . 1 1 (

1 2

π +

π

π

= +

0.251

=

(10)

55

Copyright © 2005, S. K. Mitra

Simple IIR Digital Filters Simple IIR Digital Filters

• The gain responses of the two filters are shown below

• As can be seen, cascading has resulted in a sharper roll-off in the gain response

10-2 10-1 100

-20 -15 -10 -5 0

ω/π

Gain, dB

K=4

K=1 Passband details

10-2 10-1 100

-4 -2 0

ω/π

Gain, dB K=1 K=4

Referensi

Dokumen terkait

This study aims to find out how the index level and digital literacy skills of teachers after being given training and assistance with the Gold Standard Project Based Learning GS-PjBL

ϻ΍ϭ ΕΎϓΎθϜΘγϻ΍ ΔϴϟϭήΘΒϟ΍ ΕΎϴρΎϴΘΣ ϡΎϋ ϝϼΧ ˱΍ίέΎΑ ˱ΎϧΎϜϣ ΔϘϴϤόϟ΍ ΓέϮϤϐϤϟ΍ ϖρΎϨϤϟ΍ ϲϓ ίΎϐϟ΍ϭ ςϔϨϟ΍ Ϧϋ ΐϴϘϨΘϟ΍ ϞΘΣ΍ 2013 ΖΗΎΑ ΩϮϬΠϟ΍ ϥ΃ ϭΪΒϳϭ ˬ Ϧϋ ϥΎϴΣϷ΍ ξόΑ ϲϓ ΪϳΰΗ ϕΎϤϋ΃ ϰϠϋ