• Tidak ada hasil yang ditemukan

第五章 討論與結論

第四節 結論

這項研究的目的在評估使用連續性非接觸式生理監測儀對病患的心跳速率、

呼吸速率以及體溫測量之效度,研究結果顯示,在一般病房使用非接觸式連續性

生命徵象監測技術具有潛力,訊息直接回傳護理站,可提供護理人員即時得知病

患生理資訊,具開發病患監測警示系統之價值。個別儀器間可能存在測量差異,

目前的原型設備品質及技術功能需要進一步改善,並可加入個人化參數調整功能,

以提高臨床用途。

68

參考文獻

中文部份

王秀紅、黃璉華、江惠英、朱宗藍、陳淑芬(2018,11月15日).2018年第十九 屆「ICN 亞洲護理人力論壇」暨第十五屆「亞洲護理學會聯盟」會議報 告.臺北市,臺灣。

王佩麟、向慧芬、李韻雯、謝逸中、靖永潔、蕭淑代(2013).住院病房雲端照 護系統-科技, 效率, 安全與護理友善.新臺北護理期刊,15(1),1-10。

doi:10.6540/NTJN.2013.1.001

王智瑩、陸鳳屏(2018).大腸直腸癌篩檢於老年人之應用.台灣老年醫學暨老 年學雜誌,13(1),13-27。

全國法規資料庫.醫療機構設置標準.取自

https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0020025

林幼平、郭旭松、謝長堯、黃文哲、陳建仁(1996) .子宮頸癌篩檢工具之評 估.中華衛誌,15(5),411-424。doi:10.6288/CJPH1996-15-05-02

林秋芬、高靖秋(2014).臨床護理人力運用的演變與前瞻.護理雜誌,61(2),

13 -19。doi:10.6224/JN.61.2.13

陳亮恭(2018).超高齡社會智慧醫療應用再進化.福祉科技與服務管理學刊,

6(1),81-88。doi:10.6283/JOCSG.201805_6(1).81

黃獻樑、程劭儀(2012).乳癌的篩檢.台北市醫師公會會刊,56(3),25-27。

臺北醫學大學附設醫院(2017,11月28日).尖端AI系統監測 病況掌握零時 差.取自http://libir.tmu.edu.tw/handle/987654321/56312

趙君傑、侯全益、侯甚光(2016).美國遠距醫療及遠距照護加護病房.台灣醫 學,20(4),427-432。doi:10.6320/FJM.2016.20(4).11

趙育玲、李亭亭(2015).加護病房護理人員使用臨床資訊系統之滿意度研究.

護理暨健康照護研究,11(2),109-118。doi: 10.6225/JNHR.11.2.109

69

衛生福利部疾病管制署(2017,9月19日修訂版).症狀監視及預警系統作業說 明.取自https://www.cdc.gov.tw/File/Get/IokPMZctx00oUltW9MMo7Q 盧郁文(2004).醫用生理監視器市場現況.經濟部技術處產業技術知識服務

(ITIS)計畫出版品,臺北市,臺灣。

蘇碧泉(2015).79 例护理不良事件的回顾性分析.国际医药卫生导报, 21(10), 1463-1465。

70

英文部份

Alizadeh, M., Shaker, G., De Almeida, J. C. M., Morita, P. P., & Safavi-Naeini, S.

(2019). Remote monitoring of human vital signs using mm-wave FMCW radar. Institute of Electrical and Electronics Engineers Access, 7, 54958-54968.

doi: 10.1109/ACCESS.2019.2912956

American Heart Association (2015-7-31), All About Heart Rate (Pulse),

https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high- blood-pressure/all-about-heart-rate-pulse

Association for the Advancement of Medical Instrumentation (2002). Cardiac Monitors, Heart Rate Meters, and Alarms. American National Standard EC13, Washington, DC.

Ben-Ari, J., Zimlichman, E., Adi, N., & Sorkine, P. (2010). Contactless respiratory and heart rate monitoring: validation of an innovative tool. Journal of Medical Engineering & Technology, 34(7/8), 393–398.

doi:10.3109/03091902.2010.503308

Bergese, S. D., Mestek, M. L., Kelley, S. D., McIntyre, R., Jr, Uribe, A. A., Sethi, R., Watson, J. N., & Addison, P. S. (2017). Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: A comparison with capnography. Anesthesia and Analgesia, 124(4), 1153–1159.

doi:10.1213/ANE.0000000000001852

Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307-310.

doi:10.1016 / S0140-6736(86)90837-8

Boatin, A. A., Wylie, B., Goldfarb, I., Azevedo, R., Pittel, E., Ng, C., & Haberer, J.

(2015). Wireless fetal heart rate monitoring in inpatient full-term pregnant

71

women: testing functionality and acceptability. Plos One, 10(1).

doi:10.1371/journal.pone.0117043

Boatin, A. A., Wylie, B. J., Goldfarb, I., Azevedo, R., Pittel, E., Ng, C., & Haberer, J.

E. (2016). Wireless vital sign monitoring in pregnant women: a functionality and acceptability study. Telemedicine and e-Health, 22(7), 564-571.

doi:10.1089/tmj.2015.0173

Breteler, M. J., Huizinga, E., van Loon, K., Leenen, L. P., Dohmen, D. A., Kalkman, C. J., & Blokhuis, T. J. (2018). Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. British Medical Journal Open, 8(2), e020162. doi:10.113 6/bmjopen-2017-020162

Brown, H., Terrence, J., Vasquez, P., Bates, D. W., & Zimlichman, E. (2014).

Continuous monitoring in an inpatient medical-surgical unit: a controlled clinical trial. The American Journal of Medicine, 127(3), 226-232.

doi:10.1016/j.amjmed.2013.12.004

Cardona‐Morrell, M., Prgomet, M., Turner, R. M., Nicholson, M., & Hillman, K.

(2016). Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta‐

analysis. International Journal of Clinical Practice, 70(10), 806-824.

doi:10.1111/ijcp.1284

Chen, L., Ogundele, O., Clermont, G., Hravnak, M., Pinsky, M. R., & Dubrawski, A.

W. (2017). Dynamic and personalized risk forecast in step-down units.

Implications for monitoring paradigms. Annals of the American Thoracic Society, 14(3), 384-391. doi:10.1513/AnnalsATS.201611-905OC

Chourpiliadis C, & Bhardwaj A. (2019). Physiology, Respiratory Rate. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537306/

72

Chung, H. U., Kim, B. H., Lee, J. Y., Lee, J., Xie, Z. Q., Ibler, E. M., . . . Rogers, J. A.

(2019). Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 363(6430), 947-+.

doi:10.1126/science.aau0780

Clifton, L., Clifton, D. A., Pimentel, M. A., Watkinson, P. J., & Tarassenko, L. (2013).

Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. Institute of Electrical and Electronics Engineers Journal of Biomedical and Health Informatics, 18(3), 722-730.

doi:10.1109/JBHI.2013.2293059

Croteau, R. J. (2003). Sentinel events, root cause analysis and trustee. Trustee, 56(3), 33-33.

Downey, C. L., Brown, J. M., Jayne, D. G., & Randell, R. (2018). Patient attitudes towards remote continuous vital signs monitoring on general surgery wards: An interview study. International Journal of Medical Informatics, 114, 52-56.

doi:10.1016/j.ijmed inf.2018.03.014

Downey, C., Randell, R., Brown, J., & Jayne, D. G. (2018). Continuous versus intermittent vital signs monitoring using a wearable, wireless patch in patients admitted to surgical wards: Pilot cluster randomized controlled trial. Journal of Medical Internet Research, 20(12), e10802. doi:10.2196/10802

Dunn G. Statistical evaluation of measurement errors: Design and analysis of reliability studies, 2nd ed. London: Arnold, 2004.

Fletcher, R. H., Fletcher, S. W., & Wagner, E.H. (1996). Clinical Epidemiology: The essentials. Philadelphia: Lippincott Williams & Wilkins.

Freedman, N. S., Kotzer, N., & Schwab, R. J. (1999). Patient perception of sleep quality and etiology of sleep disruption in the intensive care unit. American

73

Journal of Respiratory and Critical Care Medicine, 159(4), 1155-1162.

doi:10.1164/ajrccm.159.4.9806141

GE Healthcare(2014). B40/B20 patient monitor user's guide related to software VSP- C. https://image.tigermedical.com/Manuals/GEH2060600-005-507513--

20180315104424922.pdf

Gibson, K., Al-Naji, A., Fleet, J., Steen, M., Esterman, A., Chahl, J., ... & Morris, S.

(2019). Non-contact heart and respiratory rate monitoring of preterm infants based on a computer vision system: A method comparison study. Pediatric Research. doi:10.1016/j.aucc.2018.11.009

Goldhill, D. R., & McNarry, A. F. (2004). Physiological abnormalities in early warning scores are related to mortality in adult inpatients. British Journal of Anaesthesia, 92(6), 882-884. doi:10.1093/bja/aeh113

Hands, C., Reid, E., Meredith, P., Smith, G. B., Prytherch, D. R., Schmidt, P. E., &

Featherstone, P. I. (2013). Patterns in the recording of vital signs and early warning scores: Compliance with a clinical escalation protocol. British Medical Journal Quality & Safety, 22(9), 719-726. doi: 10.1136/bmjqs-2013-001954 Harford, M., Catherall, J., Gerry, S., Young, J. D., & Watkinson, P. J. (2019).

Availability and performance of image-based, non-contact methods of

monitoring heart rate, blood pressure, respiratory rate, and oxygen saturation: A systematic review. Physiological Measurement, 40(6). doi:10.1088/1361- 6579/ab1f1d

Hodgetts, T. J., Kenward, G., Vlachonikolis, I. G., Payne, S., & Castle, N. (2002). The identification of risk factors for cardiac arrest and formulation of activation criteria to alert a medical emergency team. Resuscitation, 54(2), 125-131.

doi:10.1016/S0300-9572(02)00100-4

74

Hogan, H., Healey, F., Neale, G., Thomson, R., Vincent, C., & Black, N. (2012).

Preventable deaths due to problems in care in English acute hospitals: a retrospective case record review study. British Medical Journal Quality &

Safety, 21(9) 709-712. doi:10.1136/bmjqs-2011-001159

Hope, J., Recio-Saucedo, A., Fogg, C., Griffiths, P., Smith, G. B., Westwood, G., &

Schmidt, P. E. (2018). A fundamental conflict of care: Nurses' accounts of balancing patients' sleep with taking vital sign observations at night. Journal of Clinical Nursing, 27(9-10), 1860-1871. doi:10.1111/jocn.14234

Jeffs, E., Vollam, S., Young, J. D., Horsington, L., Lynch, B., & Watkinson, P. J.

(2016). Wearable monitors for patients following discharge from an intensive care unit: Practical lessons learnt from an observational study. Journal of Advanced Nursing, 72(8), 1851-1862. doi:10.1111/jan.12959

Jones, D., Mitchell, I., Hillman, K., & Story, D. (2013). Defining clinical deterioration. Resuscitation, 84(8), 1029-1034.

doi:10.1016/j.resuscitation.2013.01.013

Johnson, K. D., Winkelman, C., Burant, C. J., Dolansky, M., & Totten, V. (2014). The factors that affect the frequency of vital sign monitoring in the emergency department. Journal of Emergency Nursing, 40(1), 27-35.

doi:10.1016/j.jen.2012.07.023

Kebe, M., Gadhafi, R., Mohammad, B., Sanduleanu, M., Saleh, H., & Al-Qutayri, M.

(2020). Human vital signs detection methods and potential using radars: A review. Sensors, 20(5), 1454. doi:10.3390/s20051454

Kellett, J., & Sebat, F. (2017). Make vital signs great again–A call for action. European Journal of Internal Medicine, 45, 13-19.

doi:10.1016/j.ejim.2017.09.018

75

Khanna, A. K., Hoppe, P., & Saugel, B. (2019). Automated continuous noninvasive ward monitoring: future directions and challenges. Critical Care, 23(1), 194.

doi:10.1186/s13054-019-2485-7

Li, C., Chen, F., Jin, J., Lv, H., Li, S., Lu, G., & Wang, J. (2015). A method for remotely sensing vital signs of human subjects outdoors. Sensors, 15(7), 14830- 14844. doi:10.3390/s150714830

Lin, L. (2007). Overview of agreement statistics for medical devices. Journal of Biopharmaceutical Statistics, 18(1), 126-144. doi:10.1080/10543400701668290 Malasinghe, L. P., Ramzan, N., & Dahal, K. (2019). Remote patient monitoring: A

comprehensive study. Journal of Ambient Intelligence and Humanized Computing, 10(1), 57-76. doi:10.1007/s12652-017-0598-x

Meadows, G. (2002). The nursing shortage: Can information technology

help?. Nursing Economics, 20(1), 46. doi:10.1097/00152193-198909000-00007 Mercuri, M., Liu, Y. H., Lorato, I., Torfs, T., Bourdoux, A., & Van Hoof, C. (2017).

Frequency-tracking CW Doppler radar solving small-angle approximation and null point issues in non-contact vital signs monitoring. Institute of Electrical and Electronics Engineers Transactions on Biomedical Circuits and Systems, 11(3), 671-680. doi: 10.1109/TBCAS.2016.2647560

Mitchell, I., & Van Leuvan, C. H. (2008). Missed opportunities? An observational study of vital sign measurements. Critical Care and Resuscitation, 10(2), 111- 115. doi:10.1016/j.bone.2009.01.167

National Institute for Health and Clinical Excellence. (2007). Acutely ill patients in hospital: recognition of and response to acute illness in adults in hospital. NICE Clinical Guideline, 50. London.

https://www.ncbi.nlm.nih.gov/books/NBK45947/

Obermeyer, Z., Samra, J. K., & Mullainathan, S. (2017). Individual differences in

76

normal body temperature: longitudinal big data analysis of patient records. British Medical Journal, 359. doi:10.1136/bmj.j5468

Pérez-Rodríguez, G., Brito-Zurita, O. R., Sistos-Navarro, E., Benítez-Aréchiga, Z. M., Sarmiento-Salazar, G. L., & Vargas-Lizárraga, J. F. (2015). Telemetric

monitoring reduces visits to the emergency room and cost of care in patients with chronic heart failure. Cirugía y Cirujanos (English Edition), 83(4), 279-285.

doi:10.1016/j.circen.2015.09.016

Prgomet, M., Cardona-Morrell, M., Nicholson, M., Lake, R., Long, J., Westbrook, J., ... & Hillman, K. (2016). Vital signs monitoring on general wards: clinical staff perceptions of current practices and the planned introduction of continuous monitoring technology. International Journal for Quality in Health Care, 28(4), 515-521. doi:10.1093/intqhc/mzw062

Prytherch, D. R., Smith, G. B., Schmidt, P. E., & Featherstone, P. I. (2010). ViEWS—

towards a national early warning score for detecting adult inpatient deterioration. Resuscitation, 81(8), 932-937.

doi:10.1016/j.resuscitation.2010.04.014

Schulman, C. S., & Staul, L. (2010). Standards for frequency of measurement and documentation of vital signs and physical assessments. Critical Care

Nurse, 30(3), 74-76. doi:10.4037/ccn2010406

Stevens, N. T., Steiner, S. H., & MacKay, R. J. (2017). Assessing agreement between two measurement systems: An alternative to the limits of agreement

approach. Statistical Methods in Medical Research, 26(6), 2487-2504.

doi:10.1177/0962280215601133

Subbe, C. P., Kruger, M., Rutherford, P., & Gemmel, L. (2001). Validation of a modified Early Warning Score in medical admissions. An International Journal of Medicine, 94(10), 521-526. doi:10.1093/qjmed/94.10.521

77

Van Loon, K., Breteler, M. J. M., Van Wolfwinkel, L., Leyssius, A. R., Kossen, S., Kalkman, C. J., ... & Peelen, L. M. (2016). Wireless non-invasive continuous respiratory monitoring with FMCW radar: a clinical validation study. Journal of Clinical Monitoring and Computing, 30(6), 797-805. doi:10.1007/s10877-015- 9777-5

Vasireddy, R., Roth, C., Mathis, J., Goette, J., Jacomet, M., & Vogt, A. (2018). K-band doppler radar for contact-less overnight sleep marker assessment: A pilot

validation study. Journal of Clinical Monitoring and Computing, 32(4), 729-740.

doi:10.1007/s10877-017-0060-9

Wang, F. K., Tang, M. C., Su, S. C., & Horng, T. S. (2016). Wrist pulse rate monitor using self-injection-locked radar technology. Biosensors, 6(4), 54.

doi:10.3390/bios6040054

Watkins, T., Whisman, L., & Booker, P. (2016). Nursing assessment of continuous vital sign surveillance to improve patient safety on the medical/surgical unit.

Journal of Clinical Nursing, 25(1-2), 278-281. doi:10.1111/jocn.13102

Watkinson, P. J., Barber, V. S., Price, J. D., Hann, A., Tarassenko, L., & Young, J. D.

(2006). A randomised controlled trial of the effect of continuous electronic physiological monitoring on the adverse event rate in high risk medical and surgical patients. Anaesthesia, 61(11), 1031-1039. doi:10.1111/j.1365- 2044.2006.04818.x

Weenk, M., Koeneman, M., van de Belt, T. H., Engelen, L., van Goor, H., & Bredie, S. J. H. (2019). Wireless and continuous monitoring of vital signs in patients at the general ward. Resuscitation, 136, 47-53.

doi:10.1016/j.resuscitation.2019.01.017

Weenk, M., van Goor, H., Frietman, B., Engelen, L. J., van Laarhoven, C. J., Smit, J., ... & van de Belt, T. H. (2017). Continuous monitoring of vital signs using

78

wearable devices on the general ward: pilot study. Journal of Medical Internet Research mHealth and uHealth, 5(7), e91. doi: 10.2196/mhealth.7208

Welch, J., Moon, J., & McCombie, S. (2012). Early detection of the deteriorating patient: The case for a multi-parameter patient-worn monitor. Biomedical Instrumentation & Technology, 46(s2), 57-64. doi: 10.2345/0899-8205-46.s2.57 Yoder, J. C., Yuen, T. C., Churpek, M. M., Arora, V. M., & Edelson, D. P. (2013). A

prospective study of nighttime vital sign monitoring frequency and risk of clinical deterioration. The Journal of the American Medical Association Internal Medicine, 173(16), 1554-1555. doi:10.1001/jamainternmed.2013.7791

79

附 錄

附表 1、個別病床參考標準與雷達設備原始量測結果平均值、最小值及最大值 病床號 測量

次數 項目 參考標準 mean(min~max)

雷達設備 mean(min~max)

501A 12

HR 75.75 (64~86) 83.25 (55~116)

RR 17.58 (11~24) 22.42 (12~29)

BT 35.9 (35.5~36.2) 38.11 (37.6~38.7)

502A 7

HR 84 (81~87) 82.14 (59~98)

RR 18.71 (17~24) 18.14 (17~21)

BT 36.46 (36.2~36.8) 37.84 (37.3~38.6)

502B 13

HR 67.69 (55~82) 85 (59~98)

RR 16.77 (10~21) 18.62 (11~24)

BT 35.8 (35.2~36.3) 37.08 (36.5~37.7)

502C 9

HR 79.11 (70~93) 84.44 (59~112)

RR 18.22 (13~23) 22.11 (12~29)

BT 36.56 (35.6~37.1) 38 (37.3~38.5)

503A 25

HR 61.72 (49~75) 73.8 (51~97)

RR 14.56 (11~20) 17.92 (14~27)

BT 36.23 (35.8~36.7) 37.81 (37.2~38.6)

503B 28

HR 68.5 (52~93) 82.61 (51~108)

RR 16.04 (12~26) 16.46 (8~26)

BT 36.49 (35.9~37) 37.94 (37.2~39.2)

503C 10

HR 64.8 (53~88) 90.5 (78~99)

RR 15.9 (14~17) 17.2 (11~23)

BT 36.47 (35.9~36.9) 38 (37.4~38.6)

503D 26

HR 67.81 (53~90) 81.88 (53~106)

RR 15.12 (10~21) 17.04 (11~28)

BT 36.57 (35.8~37.4) 37.4 (36.9~38.5)

505A 38

HR 64.95 (59~75) 78.71 (50~116)

RR 18.03 (12~23) 19.24 (11~29)

BT 36.24 (34.2~37.2) 37.56 (36.6~38.8)

505B 14

HR 62 (57~67) 78 (57~109)

RR 15.86 (12~18) 17.43 (12~29)

BT 36.44 (35.5~36.9) 38.13 (37.4~39.1)

505C 20

HR 83.2 (54~122) 75.9 (62~103)

RR 15.8 (10~21) 16.55 (11~23)

BT 36.23 (35.7~37) 37.39 (36.9~38.2)

80

病床號 測量

次數 項目 參考標準 mean(min~max)

雷達設備 mean(min~max)

505D 13

HR 76.54 (64~88) 89.38 (65~118)

RR 14.62 (9~18) 16.23 (12~24)

BT 36.47 (35.8~37.1) 37.67 (37~38.6)

506A 31

HR 75.06 (44~100) 81.94 (52~103)

RR 15.9 (9~27) 16.97 (11~28)

BT 35.81 (35.1~36.5) 37.92 (37~38.9)

506B 27

HR 68.74 (56~85) 81 (56~107)

RR 17.59 (10~25) 18.7 (11~26)

BT 36.39 (35.6~37.1) 34.67 (32.3~43.1)

506C 11

HR 78.73 (62~92) 85.36 (58~106)

RR 15.09 (12~18) 16.27 (11~27)

BT 36.33 (35.2~37.4) 38.17 (37.6~38.8)

506D 35

HR 72.97 (59~85) 81.51 (55~107)

RR 14.4 (10~27) 16.49 (11~28)

BT 36.1 (35.3~36.7) 37.96 (37.1~38.9)

507A 14

HR 73.71 (57~88) 78.71 (62~95)

RR 15.43 (12~20) 18.36 (14~26)

BT 36.35 (35.9~36.6) 36.66 (35.2~37.9)

507B 32

HR 71.94 (50~88) 82.5 (65~105)

RR 15.66 (10~22) 18.16 (10~28)

BT 36.54 (35.5~37.5) 38 (36.5~40)

507C 21

HR 64.62 (48~73) 77.05 (59~99)

RR 13.05 (9~17) 16.95 (9~28)

BT 36.22 (35~36.9) 33.5 (32~35)

附表 2、校正差值後個別病床參考標準與雷達設備量測結果差值範圍分佈表

床號 心跳速率 差值

量測次數 (%)

呼吸速率 差值

量測次數

(%) 體溫差值 量測次數 (%)

501A

±10%# 6 (50) ±3 4 (33.33) ±0.5 ˚C 0

±10%~±15 2 (16.67) >±3~±5 3 (25) >±0.5 ˚C 12 (100)

>±15 4 (33.33) >±5 5 (41.67)

502A

±10% 2 (28.57) ±3 5 (71.43) ±0.5 ˚C 4 (57.14)

±10%~±15 3 (42.86) >±3~±5 1 (14.29) >±0.5 ˚C 3 (42.86)

>±15 2 (28.57) >±5 1 (14.29)

502B

±10% 3 (23.08) ±3 10 (76.92) ±0.5 ˚C 8 (61.54)

±10%~±15 4 (30.77) >±3~±5 0 >±0.5 ˚C 5 (38.46)

>±15 6 (46.15) >±5 3 (23.08)

81 床號 心跳速率

差值

量測次數 (%)

呼吸速率 差值

量測次數

(%) 體溫差值 量測次數 (%)

502C

±10% 5 (55.56) ±3 1 (11.11) ±0.5 ˚C 7 (77.78)

±10%~±15 0 >±3~±5 3 (33.33) >±0.5 ˚C 2 (22.22)

>±15 4 (44.44) >±5 5 (55.56)

503A

±10% 3 (12) ±3 16 (64) ±0.5 ˚C 13 (52)

±10%~±15 12 (48) >±3~±5 4 (16) >±0.5 ˚C 12 (48)

>±15 10 (40) >±5 5 (20)

503B

±10% 4 (14.29) ±3 19 (67.86) ±0.5 ˚C 13 (46.43)

±10%~±15 7 (25) >±3~±5 5 (17.86) >±0.5 ˚C 15 (53.57)

>±15 17 (60.71) >±5 4 (14.29)

503C

±10% 3 (30) ±3 8 (80) ±0.5 ˚C 6 (60)

±10%~±15 1 (10) >±3~±5 1 (10) >±0.5 ˚C 4 (40)

>±15 6 (60) >±5 1 (10)

503D

±10% 10 (38.46) ±3 22 (84.62) ±0.5 ˚C 24 (92.31)

±10%~±15 7 (26.92) >±3~±5 2 (7.69) >±0.5 ˚C 2 (7.69)

>±15 9 (34.62) >±5 2 (7.69)

505A

±10% 12 (31.58) ±3 20 (52.63) ±0.5 ˚C 27 (71.05)

±10%~±15 14 (36.84) >±3~±5 6 (15.79) >±0.5 ˚C 11 (28.95)

>±15 12 (31.58) >±5 12 (31.58)

505B

±10% 0 ±3 11 (78.57) ±0.5 ˚C 6 (42.86)

±10%~±15 8 (57.14) >±3~±5 1 (7.14) >±0.5 ˚C 8 (57.14)

>±15 6 (42.86) >±5 2 (14.29)

505C

±10% 7 (35) ±3 12 (60) ±0.5 ˚C 17 (85)

±10%~±15 5 (25) >±3~±5 4 (20) >±0.5 ˚C 3 (15)

>±15 8 (40) >±5 4 (20)

505D

±10% 6 (46.15) ±3 9 (69.23) ±0.5 ˚C 9 (69.23)

±10%~±15 6 (46.15) >±3~±5 3 (23.08) >±0.5 ˚C 4 (30.77)

>±15 1 (7.69) >±5 1 (7.69)

506A

±10% 10 (32.26) ±3 24 (77.42) ±0.5 ˚C 0

±10%~±15 12 (38.71) >±3~±5 2 (6.45) >±0.5 ˚C 31 (100)

>±15 9 (29.03) >±5 5 (16.13)

506B

±10% 11 (40.74) ±3 14 (51.85) ±0.5 ˚C 2 (7.41)

±10%~±15 12 (44.44) >±3~±5 8 (29.63) >±0.5 ˚C 25 (92.59)

>±15 4 (14.81) >±5 5 (18.52)

506C

±10% 2 (18.18) ±3 6 (54.55) ±0.5 ˚C 3 (27.27)

±10%~±15 4 (36.36) >±3~±5 3 (27.27) >±0.5 ˚C 8 (72.73)

>±15 5 (45.45) >±5 2 (18.18)

506D

±10% 9 (25.71) ±3 21 (60) ±0.5 ˚C 7 (20)

±10%~±15 20 (57.14) >±3~±5 6 (17.14) >±0.5 ˚C 28 (80)

>±15 6 (17.14) >±5 8 (22.86)

82 床號 心跳速率

差值

量測次數 (%)

呼吸速率 差值

量測次數

(%) 體溫差值 量測次數 (%)

507A

±10% 4 (28.57) ±3 11 (78.57) ±0.5 ˚C 12 (85.71)

±10%~±15 7 (50) >±3~±5 0 >±0.5 ˚C 2 (14.29)

>±15 3 (21.43) >±5 3 (21.43)

507B

±10% 9 (28.13) ±3 12 (37.5) ±0.5 ˚C 21 (65.63)

±10%~±15 15 (46.88) >±3~±5 5 (15.63) >±0.5 ˚C 11 (34.38)

>±15 8 (25) >±5 15 (46.88)

507C

±10% 7 (33.33) ±3 12 (57.14) ±0.5 ˚C 1 (4.76)

±10%~±15 9 (42.86) >±3~±5 3 (14.29) >±0.5 ˚C 20 (95.24)

>±15 5 (23.81) >±5 6 (28.57)

# ±10%:±10%*參考標準心跳次數

附表 3、調整影響因素下雷達設備與參考標準量測心跳速率≠60~100次/分鐘之 性別分層分析

附表3-A、女性量測結果之簡單及複迴歸分析(量測次數= 56)

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 63.223 15.218 0 0.000*

雷達設備 -0.021 0.183 -0.015 0.911

R2 0.0002

aR2 -0.0183

截距 -0.099 72.426 0 0.999

雷達設備 -0.307 0.123 -0.228 0.016* 年齡 () 0.759 0.127 0.536 <.0001**

BMI (kg/m2) -1.627 1.283 -0.195 0.212

慢性病共病史(0:1:) -7.120 8.289 -0.152 0.395 入院科別(0:內科1:其他) 8.186 4.792 0.183 0.095 病房溫度(℃) 1.455 1.118 0.173 0.200 病房濕度(%) 0.708 0.346 0.308 0.047* 病床傾角() 0.842 0.268 0.269 0.003* 共存人數 -2.341 3.369 -0.069 0.491 無線射頻個數 -4.441 4.446 -0.153 0.323

R2 0.7883

aR2 0.7413

*p <0.05,**p <0.001

附表3-B、男性量測結果之簡單及複迴歸分析(量測次數= 13)

83

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 47.070 10.918 0 0.001*

雷達設備 0.069 0.136 0.152 0.621

R2 0.023

aR2 -0.0658

*p <0.05,**p <0.001

附表 4、調整影響因素下雷達設備與參考標準量測呼吸速率≠12~20次/分鐘之性 別分層分析

附表4-A、女性量測結果之簡單及複迴歸分析(量測次數=26)

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 4.927 3.918 0 0.221

雷達設備 0.592 0.212 0.495 0.010*

R2 0.245

aR2 0.214

截距 53.435 27.174 0 0.068

雷達設備 0.236 0.204 0.198 0.265 年齡 () -0.434 0.142 -1.070 0.008*

BMI (kg/m2) 0.191 0.206 0.166 0.370

慢性病共病史(0:1:) -1.294 3.171 -0.082 0.689 入院科別(0:內科1:其他) 0.079 2.705 0.007 0.977 病房溫度(℃) 0.346 0.502 0.162 0.502 病房濕度(%) -0.457 0.222 -0.664 0.057 病床傾角() -0.330 0.169 -0.437 0.071 共存人數 -0.619 2.880 -0.056 0.833 無線射頻個數 0.004 1.810 0.001 0.998

R2 0.7454

aR2 0.5757

*p <0.05

附表4-B、男性量測結果之簡單及複迴歸分析(量測次數= 41)

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 1.458 2.320 0 0.533

雷達設備 0.863 0.117 0.763 <.0001**

84

項目 參數估計值 標準誤差 標準化

參數估計值 p

R2 0.5828

aR2 0.5721

截距 11.832 21.815 0 0.592

雷達設備 0.922 0.145 0.815 <.0001**

年齡 () -0.078 0.048 -0.204 0.114

BMI (kg/m2) 0.359 0.212 0.260 0.102

慢性病共病史(0:1:) 1.338 1.728 0.104 0.445 入院科別(0:內科1:其他) -1.503 1.875 -0.116 0.429 病房溫度(℃) -0.685 0.586 -0.148 0.252 病房濕度(%) -0.062 0.088 -0.092 0.488 病床傾角() 0.060 0.096 0.105 0.534 共存人數 1.483 1.377 0.183 0.290 無線射頻個數 0.387 0.871 0.064 0.660

R2 0.5304

aR2 0.2957

**p <0.001

附表 5、調整影響因素下雷達設備與參考標準量測體溫≠35.7~38℃之性別分層 分析

附表5-A、女性量測結果之簡單及複迴歸分析(量測次數=9)

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 35.587 2.993 0 <.0001**

雷達設備 -0.013 -0.16 0.875 -0.061

R2 0.0038

aR2 -0.1385

**p <0.001

附表5-B、男性量測結果之簡單及複迴歸分析(量測次數= 28)

項目 參數估計值 標準誤差 標準化

參數估計值 p

截距 36.904 0.914 0 <.0001**

雷達設備 -0.039 0.024 -2.299

R2 0.0897

aR2 0.0547

Dokumen terkait