• Tidak ada hasil yang ditemukan

Weights of Irreducible Representations

Dalam dokumen Graduate Texts in Mathematics 255 (Halaman 172-176)

3.2 Irreducible Representations

3.2.2 Weights of Irreducible Representations

3.2 Irreducible Representations 153

as an s(α)-module. Now hµ,himust occur as an eigenvalue of h in one of the submodules in (3.27), and hence−hµ,hialso occurs as an eigenvalue by Lemma 2.3.2. It follows that there exists a weight of the formµ+kαinX(λ)with

hµ+kα,hi=−hµ,hi.

Thus 2k=−2hµ,hi. Hencesαµ=µ+kα∈X(λ), which proves (iv).

We can now complete the proof of the theorem. The Weyl groupW is generated by the reflectionssα withα ∈∆ by Theorem 3.1.9. Since (iv) holds for all simple rootsα, we conclude that the setX(λ)is invariant underW. We already know from Lemma 3.2.2 that dimLλ(µ)<∞for allµ. Thus the finite-dimensionality ofLλ is a consequence of the following property:

(v) The cardinality ofX(λ)is finite.

Indeed, letµ∈X(λ). Thenµ∈h

R. By Proposition 3.1.12 there existss∈W such that ξ =sµ is in the positive Weyl chamberC. Since ξ ∈X(λ), we know from Lemma 3.2.2 thatξ =λ−Q, whereQ=β1+···+βr withβi∈Φ+. Let(·,·)be the inner product onh

Ras in Remark 3.1.5. Then

(ξ,ξ) = (λ−Q,ξ) = (λ,ξ)−(Q,ξ)

≤(λ,ξ) = (λ,λ−Q)

≤(λ,λ).

Here we have used the inequalities(λ,βi)≥0 and(ξ,βi)≥0, which hold for ele- ments ofC. SinceW acts by orthogonal transformations, we have thus shown that

(µ,µ)≤(λ,λ). (3.28)

This implies thatX(λ)is contained in the intersection of the ball of radiuskλkwith the weight latticeP(g). This subset ofP(g)is finite, which proves (v). ut

The dual action ofsαonβ ∈hissαβ=β− hβ,hαiα. The Weyl groupW ofgis the finite group generated by the root reflections.

The root lattice and weight lattice are contained in the real vector space h spanned by the roots, and the inner product(α,β)onh R

Rdefined by the Killing form is positive definite (see Corollary 2.5.22); for the classical groups this inner product is proportional to the standard inner product with(εij) =δi j. Letkαk2= (α,α)be the associated norm. Since the root reflections are real orthogonal transformations, the Weyl group preserves this inner product and norm.

Proposition 3.2.7.Let(π,V)be a finite-dimensional representation ofgwith weight space decomposition

V= M

µ∈X(V)

V(µ).

Forα∈Φ let{eα,fα,hα}be a TDS triple associated withα. Define E=π(eα), F=π(fα), andτα=exp(E)exp(−F)exp(E)∈GL(V). Then

1.ταπ(Y)τα1=π(sαY)for Y∈h; 2.ταV(µ) =V(sαµ)for allµ∈h; 3.dimV(µ) =dimV(s·µ)for all s∈W .

Hence the weightsX(V)and the weight multiplicity function mV(µ) =dimV(µ) are invariant under W .

Proof. (1): From Theorem 2.3.6 and Proposition 2.3.3 we know thatE andF are nilpotent transformations. If X is any nilpotent linear transformation onV, then ad(X)is nilpotent on End(V)and we have

exp(X)Aexp(−X) =exp(adX)A for allA∈End(V). (3.29) (This follows from Lemma 1.6.1 and the fact that the differential of the representa- tion Ad is the representation ad.) ForY ∈hwe have

ad(E)π(Y) =−π(ad(Y)eα) =−hα,YiE. Hence ad(E)2(π(Y)) =0, and so from (3.29) we obtain

exp(E)π(Y)exp(−E) =π(Y)− hα,YiE. In particular, exp(E)π(hα)exp(−E) =π(hα)−2E. We also have

(adE)F=π(hα) and (adE)2F=−hα,hαiE=−2E. Hence(adE)3F=0, and so from (3.29) we obtain

exp(E)Fexp(−E) =F+π(hα)−E.

The linear map takingeαto−fα, fα to−eα, andhαto−hαis an automorphism of s(α)(onsl(2,C)this is the mapX7→ −Xt). Hence the calculations just made also

3.2 Irreducible Representations 155

prove that

exp(−F)π(Y)exp(F) =π(Y)− hα,YiF, exp(−F)Eexp(F) =E+π(hα)−F. Combining these relations we obtain

ταπ(Y)τα1=exp(E)exp(−F)π(Y)− hα,YiE exp(F)exp(−E)

=expEπ(Y)− hα,YiE− hα,Yiπ(hα) exp(−E)

=π(Y)− hY,αiπ(hα) =π(sαY).

(2): Let v∈V(µ) andY ∈h. Then by (1) we haveπ(Y)ταv=ταπ(sαY)v= hsαµ,Yiταv. This shows thatταv∈V(sαµ).

(3): This follows from (2), sinceW is generated by the reflectionssα. ut Remark 3.2.8.The definition of the linear transformationταcomes from the matrix identity1 1

0 1 1 0

1 1 1 1 0 1

= 0 1

1 0

inSL(2,C), where the element on the right is a representative for the nontrivial Weyl group element.

Lemma 3.2.9.Let(π,V)be a finite-dimensional representation ofgand letX(V) be the set of weights of V . Ifλ∈X(V)thenλ−kα∈X(V)for all rootsα∈Φand all integers k between0andhλ,hαi, inclusive, where hα∈his the coroot toα. Proof. We may suppose that the integerm=hλ,hαi is nonzero. Sincesα·λ = λ−mα, we have

dimV(λ) =dimV(λ−mα)

by Proposition 3.2.7. Take 06=v∈V(λ). Ifm>0 then from Theorem 2.3.6 and Proposition 2.3.3 we have 06=π(fα)kv∈V(λ−kα)fork=0,1, . . . ,m. Ifm<0 then likewise we have 06=π(eα)kv∈V(λ−kα)fork=0,−1, . . . ,m. This shows

thatλ−kα∈X(V). ut

We say that a subsetΨ⊂P(g)isΦ-saturatedif for allλ ∈Ψ andα ∈Φ, one hasλ−kα∈Ψfor all integerskbetween 0 andhλ,hαi. In particular, aΦ-saturated set is invariant under the Weyl groupW, sinceW is generated by the reflections sα(λ) =λ− hλ,hαiα. An element λ ∈Ψ is calledΦ-extreme if for allα ∈Φ, eitherλ+α∈/Ψorλ−α∈/Ψ.

From Lemma 3.2.9 the set of weights of a finite-dimensional representation ofg isΦ-saturated, and the highest weight isΦ-extreme. Using these notions we now show how to construct the complete set of weights of an irreducible representation starting with the highest weight.

Proposition 3.2.10.Let V be the finite-dimensional irreducibleg-module with high- est weightλ.

1.X(V)is the smallestΦ-saturated subset of P(g)containingλ.

2. The orbit ofλ under the Weyl group is the set ofΦ-extreme elements ofX(V).

Proof. (1): LetΨ0⊂X(V)be the smallestΦ-saturated subset ofP(g)containing λ. IfΨ00=X(V)\Ψ0 were nonempty, then it would contain a maximal element µ (relative to the root order). Sinceµ is not the highest weight, there must exist α∈Φ+such thatµ+α∈X(V). Let p,qbe the largest integers such thatµ+pα and µ−qα are weights ofV. Then p≥1, q≥0, and sα(λ+pα) =λ−qα by Corollary 2.4.5. Becauseµis maximal inΨ00, we haveµ+pα∈Ψ0. However,Ψ0, beingΦ-saturated, is invariant underW, soµ−qα∈Ψ0also. Henceµ+kα∈Ψ0 for all integers k∈[−q,p]. In particular, taking k=0 we conclude thatµ∈Ψ0, which is a contradiction.

(2): SinceW·Φ=Φ, the set ofΦ-extreme elements ofX(V)is invariant under W. Thus it suffices to show that ifµ∈P++(g)∩X(V)isΦ-extreme then µ=λ. Take a simple rootαiand corresponding reflectionsi. Let the nonnegative integers p,qbe as in (1) relative toµandαi. Sincesi(µ+pαi) =µ−qαiwe haveq−p= hµ,Hii. But sinceµis dominant,hµ,Hii ≥0. Henceq≥p. Ifp≥1 thenq≥1 and µ±αi∈X(V). This would contradict the assumption thatµisΦ-extreme. Hence p=0 andµ+αi∈/X(V)fori=1, . . . ,l. We conclude thatµis a maximal element ofX(V). But we have already shown in Corollary 3.2.3 thatλis the unique maximal

weight. ut

On the set of dominant weights of a representation, the root order≺ has the following inductive property:

Proposition 3.2.11.Let V be any finite-dimensional representation ofg. Suppose µ∈P++(g),ν∈X(V), andµ≺ν. Thenµ∈X(V).

Proof. By assumption,ν=µ+β, whereβ =∑li=1niαi∈Q+. We proceed by in- duction on ht(β) =∑ni, the result being true ifβ=0. Ifβ6=0 then

0<(β,β) =

nii).

Thus there exists an indexisuch thatni≥1 and(β,αi)>0. For this value ofiwe havehβ,Hii ≥1. Sincehµ,Hji ≥0 for all j, it follows thathν,Hii ≥1. ButX(V) isΦ-saturated, soν0=ν−αi∈X(V). Setβ0=β−αi.Thenβ0∈Q+, ht(β0) = ht(β)−1, andµ=ν0−β0. By induction,µ∈X(V). ut Corollary 3.2.12.Let Lλ be the finite-dimensional irreducibleg-module with high- est weightλ. ThenX(Lλ)∩P++(g)consists of allµ∈P++(g)such thatµλ.

Corollary 3.2.12 and inequality (3.28) give an explicit algorithm for finding the weights ofLλ. Take allβ ∈Q+such thatkλ−βk ≤ kλk(there are only finitely many) and write µ =λ−β in terms of the basis of fundamental weights. If all the coefficients are nonnegative, thenµis a weight ofLλ. This gives all the domi- nant weights, and the Weyl group orbits of these weights make up the entire set of weights.

3.2 Irreducible Representations 157

Example

Consider the representation of sl(3,C) with highest weight λ =ϖ1+2ϖ2. The weights of this representation (as determined by the algorithm just described) are shown in Figure 3.4.

α1

α2

.. .. .. .. .. .. ..

. .. . . .. .

. .. . . .

λ=̟1+2̟2

s2(λ)

s1(λ)

s2s1(λ)

s1s2(λ)

s2s1s2(λ)

λ⋄∗α2

⋄∗

⋄∗

λα1α2

............................................................................................................................... ...

......

.......

...

......

...

......

.......

...

......

...

......

.......

...

.......

...

......

.......

.....

... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ........ ..

.. .. .. .

.. .. ..

.. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. .. .

.. .. .. .. ..

.. .. .. .. .. .

.. .. .. .. .. ..

.. .. .. .. .. .. .

.. .. .. .. .. .. .

.. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..

.. .. .. .. .. .. .

.. .. .. .. .. .. .

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. .

Fig. 3.4 Weights of the representationLϖ1+2ϖ2ofsl(3,C).

It is clear from the picture thatλ−α2andλ−α1−α2are the only dominant weights inλ−Q+. The highest weight is regular, and its orbit under the Weyl group W =S3 (indicated by ?) has |W|=6 elements (in Figure 5.1, s1 ands2 denote the reflections for the simple rootsα1andα2, respectively). Each of the weights λ−α2 and λ−α1−α2 is fixed by one of the simple reflections, and theirW- orbits (indicated by∗and•, respectively) have three elements. The weights? in theouter shellhave multiplicity one, by Proposition 3.2.7 and Corollary 3.2.3. The weights marked by∗have multiplicity one, whereas the weights marked by•have multiplicity two, so dimVµ =15 (we shall see how to obtain these multiplicities in Section 8.1.2).

Dalam dokumen Graduate Texts in Mathematics 255 (Halaman 172-176)