• Tidak ada hasil yang ditemukan

國立成功大學應用數學所數值分析博士班資格考June, 17, 2011

N/A
N/A
Protected

Academic year: 2023

Membagikan "國立成功大學應用數學所數值分析博士班資格考June, 17, 2011"

Copied!
2
0
0

Teks penuh

(1)

國立成功大學應用數學所 數值分析 博士班資格考

June, 17, 2011

1. (99) Consider the initial value problem (I.V.P.)

{ y =f(t, y), a≤t ≤b, y(a) = α.

(a) () Show that

y(ti) = 3y(ti) + 4y(ti+1)−y(ti+2)

2h +h2

3y′′′(ξi), for some ξi with ti ≤ξi ≤ti+2. (5%)

(b) () Part (a) suggests the difference method

wi+2 = 4wi+13wi2hf(ti, wi), for i= 0,1, . . . , n−2.

Analyze this method for consistency, stability and convergence.

(15%)

2. (99, ) Consider the initial-value problem

y =f(t, y), for a ≤t≤b with y(a) = α Let

w0 =α

wi+1 =wi+(ti, wi, h) for i >0,

and we0 =α

e

wi+1 =wei+(te i,wei, h) for i >0,

give two one-step methods for approximating solution ofy(t) with local truncation error τi+1(h) = O(hn) and τei+1(h) = O(hn+1), respectively, i.e.,

y(ti+1) = y(ti) +(ti, y(ti), h) +O(hn+1) and

y(ti+1) =y(ti) +(te i, y(ti), h) +O(hn+2).

Please use these two methods to construct an adaptive step-size control method for the considering initial-value problem. (15%)

1

(2)

3. (91, ) Is it possible to use af(x +h) +bf(x) +cf(x −h) with suitable chosen coefficients a, b, c to approximate f′′(x)? How many function values are needed to approximate f′′(x)? (10%)

4. () SupposeS, T Rn×n are lower triangular matrices and that (ST −λI)x=b is a nonsingular system. Give an O(n2) algorithm for computing x. (10%)

5. () Let

A=

[ α uT 0 T

]

R3×3

where T R2×2 contains a pair of complex conjugate eigenvalues of matrix A. Give an algorithm for computing an orthogonal matrixQ∈ R3×3 such that

QTAQ=[ eT v 0 α

]

R3×3 with λ(Te) =λ(T). (15%)

6. () Let x = (1,0,4,6,3,4)T. Find a Householder transformation H and a positive number α so that Hx= (1, α,4,6,0,0)T. (10%)

7. () Explain how the single-shift QR stepH−µI =QR,H =RQ+µI can be carried out implicitly. That is, show how the transition from H to H can be carried out without substracting the shift µ from the diagonal of H. (10%)

8. () Consider the abstract saddle point problem [ A BT

B 0

] [ x y

]

= [ f

g ]

Suppose that an Uzawa-type algorithm is adopted for solving the saddle point problem, that is, for x0, y0 given suitably, vectors (xTi, yiT)T, i= 1,2,3, . . ., are sequentially generated by

xi+1 = xi+QA1(f−(Axi+BTyi)) yi+1 = yi+τ(Bxi+1−g)

where QA is an approximation to A. Determine QA and τ so that the Uzawa-type algorithm is convergent. (10%)

2

Referensi

Dokumen terkait

國立中正大學辦理 108 學年度學士後教育學分班招生簡章 一、依據:師資培育之大學辦理學士後教育學分班實施要點 二、班別名稱:全民國防教育科學士後教育學分班 三、開班特色與發展方向及重點: 一 開班特色 本校自 2019年7 月獲教育部核備,成為培育「高級中等學校全民國防教育科」師資之大學, 並積極配合教育部《12

經濟學系校內推薦申請表 學號: 序號: 免填 班級座號 姓名 聯絡電話 報名資格 學系規定 符合下列任一申請資格,且可檢具各項證明文件者: □ 1.人文社會科學資優班、數理資優班或科學班成績優異者,並檢附成績排名 百分比。且高中二年級上學期及下學期之部定科目「數學 A」單科成績達就 讀高中修習「數學 A」科目之全部學生總排名前 20%。 □